999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

HYPOELLIPTIC ESTIMATE FOR SOME COMPLEX VECTOR FIELDS

2020-09-21 13:48:06LIWeixiLIULvqiaoZENGJuan
數學雜志 2020年5期

LI Wei-xi,LIU Lv-qiao,ZENG Juan

(1.School of Mathematics and Statistics;Statistics and Computational Science Hubei Key Laboratory,Wuhan University,Wuhan 430072,China)

(2.School of Mathematics and Statistics,Wuhan University,Wuhan 430072,China)

1 Introduction and Main Results

Let Ω?Rnbe a neighborhood of 0,and denote byithe square root of-1.We consider the following system of complex vector fields

whereφ(x)is a real-valued function defined in Ω.This system was first studied by Treves[4],and considered therein is more general case fortvaries in Rmrather than R.Denote by(ξ,τ)the dual variables of(x,t).Then the principle symbolσfor the system{Pj}1≤j≤nis

with(x,t;ξ,τ)∈T*(Ω×Rt){0},and thus the characteristic set is

Since outside the characteristic set the system{Pj}1≤j≤nis(microlocally)elliptic,we only need to study the microlocal hypoellipticity in the two components{τ>0}and{τ<0}under the assumption that

Note we may assumeφ(0)=0 if replacingφbyφ-φ(0).Throughout the paper we will always supposeφsatisfies the following condition of finite type

for some positive integerk.In view of(1.2)it suffices to consider the nontrivial case ofk≥2 for the maximal hypoellipticity.By maximal hypoellipticity(in the sense of Helffer-Nourrigat[2]),it means the existence of a neighborhood?Ω of 0 and a constantCsuch that for anywe have

where and throughout paper we use the notationfor vectorvalued functions=(a1,···,an).Note that the maximal hypoellipticity along with the condition(1.3)yields the following subellptic estimate

Thus the subellipticity is in some sense intermediate between the maximal hypoellipticity and the local hypoellipticity.

Observe the system{Pj}1≤j≤nis translation invariant fort.So we may perform partial Fourier transform with respect tot,and study the maximal microhypoellipticity,in the two directionsτ>0 andτ<0.Indeed we only need consider without loss of generality the maximal microhypoellipticity in positive directionτ>0,since the other directionτ<0 can be treated similarly by replacingφby-φ.Consider the resulting system as follows after taking partial Fourier transform fort∈R.

and we will show the maximal microhypoellipticity at 0 in the positive direction inτ>0,which means the existence of a positive numberτ0>0,a constantC>0 and a neighborhood?Ω of 0 such that

where and throughout the paper we denotefor short if no confusion occurs.We remark the operators defined in(1.5)is closely related to the semi-classical Witten Laplacianwithτ-1the semi-classical parameter,by the relationship

where(·,·)L2stands for the inner product inL2(Rn).Helffer-Nier[1]conjecturedis subelliptic near 0 ifφis analytic and has no local minimum near 0,and this still remains open so far.Note(1.6)is a local estimate concerning the sharp regularity near 0∈Rnforτ>0,and we have also its global counterpart,which is of independent interest for analyzing the spectral property of the resolvent and the semi-classical lower bound of Witten Laplacian.We refer to Helffer-Nier’s work[1]for the detailed presentation on the topic of global maximal hypoellipticity and its application to the spectral analysis on Witten Laplacian.

Theorem 1.1(Maximal microhypoellipticity forτ>0)Letφbe a polynomial satisfying condition(1.3)withk≥2.Denote byλj,1≤j≤n,the eigenvalues of the Hessian matrix(?xi?xjφ)n×n.Suppose there exists a constantC*>0 such that for anyx∈Ω,we have the following estimates:ifk=2,then

and ifk>2,then

where∈0>0 is an arbitrarily small number andμβare given numbers withμβ>(k-2)/(k-|β|)for 2≤|β|≤k-1.Then the systemPjdefined in(1.1)is maximally microhypoelliptic in positive positionτ>0,that is,estimate(1.6)holds.

Replacingφby-φwe can get the maximal microhypoellipticity forτ<0,and thus the maximal hypoellipticity for allτ.

Corollary 1.2(Maximal hypoellipticity)Under the same assumption as Theorem 1.1 with(1.7)and(1.8)replaced by the estimate that for anyx∈Ω,

the systemPjdefined in(1.1)is maximally hypoelliptic,that is,estimate(1.4)holds.

Remark 1.3We need only verify conditions(1.7)and(1.8)for these points where Δφis positive,since it obviously holds for the points where Δφ≤0.

The details of the proof for the main result were given by[3].

主站蜘蛛池模板: 亚洲欧美成人| 国产麻豆91网在线看| 美女无遮挡免费视频网站| 就去吻亚洲精品国产欧美| 欧美午夜理伦三级在线观看| 久久这里只有精品2| 久草中文网| 91无码视频在线观看| 久久香蕉国产线看观| 久久婷婷人人澡人人爱91| 中文字幕在线观看日本| 国产99热| 国产h视频免费观看| 久久亚洲美女精品国产精品| 欧美一级专区免费大片| 亚洲国产在一区二区三区| www亚洲精品| 国产丝袜一区二区三区视频免下载| 精品福利网| 国产男女XX00免费观看| 欧美不卡视频一区发布| 2021国产v亚洲v天堂无码| 激情成人综合网| 亚洲无码视频一区二区三区| 91成人免费观看| 亚洲制服中文字幕一区二区| 久久综合结合久久狠狠狠97色 | 福利在线不卡一区| 久久综合九九亚洲一区| 91在线激情在线观看| 99热线精品大全在线观看| 五月天天天色| 色偷偷一区二区三区| 欧美三级视频网站| 亚洲人成网站在线播放2019| 色有码无码视频| 无码aaa视频| 亚洲国产欧洲精品路线久久| 天天躁狠狠躁| 久久先锋资源| 午夜福利无码一区二区| 亚洲欧美日韩精品专区| 久久亚洲精少妇毛片午夜无码| 免费高清毛片| 一级做a爰片久久免费| 永久免费无码日韩视频| 亚洲日韩国产精品无码专区| 97在线国产视频| 亚洲爱婷婷色69堂| 国产精品亚洲专区一区| 免费激情网站| 国产精品自拍露脸视频| 日韩AV手机在线观看蜜芽| 国产美女在线免费观看| 精品国产Av电影无码久久久| 国产激爽大片高清在线观看| 亚洲第一极品精品无码| 99热最新网址| 国产AV无码专区亚洲精品网站| 国产视频自拍一区| 国产成人AV大片大片在线播放 | 久久精品女人天堂aaa| 狼友视频国产精品首页| 日韩激情成人| 亚洲福利片无码最新在线播放| 亚洲一本大道在线| AV不卡在线永久免费观看| 在线高清亚洲精品二区| 色综合热无码热国产| 欧美不卡二区| 99偷拍视频精品一区二区| 亚洲精品无码在线播放网站| 亚洲码在线中文在线观看| 99re免费视频| 中文字幕佐山爱一区二区免费| 亚洲天堂日韩在线| 国产青青草视频| 黄网站欧美内射| 91久久精品日日躁夜夜躁欧美 | 日韩一区精品视频一区二区| 色悠久久综合| 日韩人妻无码制服丝袜视频|