呂金慧 王府潤 陳萍



摘要:【目的】克隆番木瓜CpTIFY10A-like基因序列,并分析其表達(dá)特性,為探索該基因功能和抗番木瓜環(huán)斑病毒(PRSV)分子機(jī)制提供理論依據(jù)。【方法】結(jié)合前期研究的抗PRSV轉(zhuǎn)錄組數(shù)據(jù),利用RACE對上調(diào)表達(dá)基因CpTIFY10A-like進(jìn)行克隆,獲得該基因cDNA全長序列,分析其編碼區(qū)序列(CDS)及進(jìn)行生物信息學(xué)分析。利用已鑒定的PRSV對3月齡番木瓜植株進(jìn)行不同處理,以感染PRSV且出現(xiàn)病癥的植株(CK+)、1.0 mL/L禾甲安(CTS-N)灌施感染PRSV且出現(xiàn)病癥的植株(B)為處理組,以清水灌施(不添加禾甲安)不感染PRSV的植株(CK-)為對照組,實(shí)時(shí)熒光定量PCR(qRT-PCR)檢測不同處理下PRSV基因和CpTIFY10A-like基因在番木瓜葉片中的表達(dá)情況。最后將CpTIFY10A-like基因CDS序列連接至pET28a-sumo載體上構(gòu)建原核表達(dá)載體,轉(zhuǎn)化Rosetta(DE3)感受態(tài)細(xì)胞,通過不同濃度IPTG誘導(dǎo)蛋白表達(dá),利用SDS-PAGE電泳檢測原核表達(dá)情況?!窘Y(jié)果】CpTIFY10A-like基因全長為1352 bp,CDS序列為822 bp,編碼273個(gè)氨基酸殘基;其編碼蛋白理論等電點(diǎn)(pI)9.23,不穩(wěn)定系數(shù)62.97,親水性平均系數(shù)-0.458,屬于不穩(wěn)定的親水性堿性蛋白,定位在細(xì)胞核上,其二級結(jié)構(gòu)以無規(guī)則卷曲和α-螺旋為主,同時(shí)含有少量的β-折疊和延伸鏈。CpTIFY10A-like蛋白與酸棗和白梨TIFY蛋白的氨基酸序列相似性較高,均含有特定的TIFY結(jié)構(gòu)域,屬于TIFY蛋白家族,三者在系統(tǒng)發(fā)育進(jìn)化樹上聚在同一分支,表明親緣關(guān)系較近。不同處理的番木瓜葉片中,PRSV基因的相對表達(dá)量排序?yàn)镃K+(1.02)>B(0.39)>CK-(0),CpTIFY10A-like基因的相對表達(dá)量排序?yàn)锽(53.12)>CK+(1.15)>CK-(1.02),且CpTIFY10A-like基因在經(jīng)禾甲安處理的感染PRSV番木瓜葉片中相對表達(dá)量顯著升高(P<0.05,下同),而PRSV基因的相對表達(dá)量顯著降低。CpTIFY10A-like基因在原核細(xì)胞中表達(dá)蛋白的分子量與理論分子量(29.36 kD)相符,且不同濃度IPTG誘導(dǎo)下,IPTG濃度越高,蛋白表達(dá)量越多,表明該基因在原核細(xì)胞中成功表達(dá)?!窘Y(jié)論】禾甲安可誘導(dǎo)CpTIFY10A-like基因高效表達(dá),進(jìn)而通過茉莉酸通路起調(diào)節(jié)作用以抵抗PRSV感染,即CpTIFY10A-like基因在番木瓜抗PRSV過程中發(fā)揮重要調(diào)控作用。
關(guān)鍵詞: 番木瓜;CpTIFY10A-like基因;生物信息學(xué);原核表達(dá);禾甲安(CTS-N);番木瓜環(huán)斑病毒(PRSV)
Abstract:【Objective】This study cloned the papaya CpTIFY10A-like gene sequence and analyzed its expression chara-cteristics,in order to provide a theoretical reference for exploring the function of this gene and the molecular mechanism of resistance to papaya ring spot virus(PRSV). 【Method】Combined with the anti-PRSV transcriptome data of the pre-vious research of the research group,the up-regulated gene CpTIFY10A-like was cloned using RACE technology. The full-length cDNA was obtained and the coding sequence(CDS) was analyzed, then bioinformatic analysis of this gene was conducted. Three-month-old papaya plants were treated differently with the identified PRSV. With plants infected with PRSV and showing symptoms(CK+), plants infected with 1.0 mL/L CTS-N infected with PRSV and showing symptoms(B) were the treatment groups. The plants irrigated with clear water(without the addition of CTS-N) and not infected with PRSV(CK-) were as the control group. qRT-PCR was used to detect the expression of PRSV gene and CpTIFY10A-like gene in papaya leaves under different treatments. At last,connected the CDS sequence of CpTIFY10A-like gene to pET28a-sumo vector to construct a prokaryotic expression vector. The reconstruction vector was transformed into competent cell Rosetta(DE3) and induced protein expression by different concentrations of IPTG. The prokaryotic expression of this gene was detected by SDS-PAGE electrophoresis. 【Result】The results demonstrated that the gene was 1352 bp in full-length,of which the CDS sequence was 822 bp,and it encoded 273 amino acid residues. The theoretical isoelectric point (pI) of the encoded protein was 9.23,the instability coefficient was 62.97,and the average hydrophilicity coefficient was 0.458. It belonged to unstable hydrophilic basic protein. Subcellular localization predicted that the gene was located on the nucleus. The secondary structure of the protein expressed by this gene was mainly random curl and α-helix,and also contained a small amount of β-turn fold and extended chain. Amino acid sequence of CpTIFY10A-like protein had high similarity with that of TIFY protein in Z. jujuba and Pyrus x bretschneideri, they both had specific TIFY domain and belonged to TIFY family. Phylogenetic analysis revealed that the CpTIFY10A-like gene was clustered into the same branch as of the homologous genes of Ziziphus jujuba. This showed that their kinship was close. Using qRT-PCR to detect papaya leaves in different treatments,it was found that the relative expression of PRSV gene was ranked as CK+(1.02)>B(0.39)>CK-(0),and the relative expression of CpTIFY10A-like gene was ranked as B(53.12)>CK+(1.15)>CK-(1.02),and the expre-ssion of CpTIFY10A-like gene in the leaves of PRSV infected papaya treated with CTS-N was significantly increased(P<0.05, the same below),while the expression of PRSV gene was significantly decreased. The molecular weight of the protein expressed by CpTIFY10A-like gene in prokaryotic cells was consistent with the theoretical molecular weight(29.36 kD). In the induction of different concentrations of IPTG,the higher the IPTG concentration,the greater the protein expression,it indicated that the gene was successfully expressed in prokaryotic cells. 【Conclusion】CTS-N can induce the efficient expression of CpTIFY10A-like gene,which plays a regulatory role in the jasmonic acid pathway to prevent and control PRSV. It indicates that the CpTIFY10A-like gene plays an important regulatory role in the anti-PRSV process of papaya.
Key words:Carica papaya L.; CpTIFY10A-like gene; bioinformatics; prokaryotic expression; CTS-N; papaya ring spot virus (PRSV)
0 引言
【研究意義】番木瓜(Carica papaya L.)是熱帶特有的草本果樹,又名萬壽果、乳瓜和石瓜,被世界衛(wèi)生組織認(rèn)定為最具營養(yǎng)價(jià)值的十大水果排行之首(陳豪軍等,2013)。近年來,番木瓜生產(chǎn)面臨的毀滅性病害是由番木瓜環(huán)斑病毒(Papaya ring spot virus,PRSV)引起(Tripathi et al.,2010;張榮萍等,2017)。植株感染此病后,初期在莖支脈上出現(xiàn)水浸斑,嫩葉上出現(xiàn)黃綠相間或深或淺的花葉病癥,末期新生葉片黃化、畸形,發(fā)病嚴(yán)重的葉片呈雞爪狀或線狀,最后枯死(Bau et al.,2008)。禾甲安(CTS-N)是一種綠色防控農(nóng)藥試劑,主要成分是殼聚糖,可有效防治番木瓜環(huán)斑花葉病毒?。ㄛ撑d祥等,2019),其防治機(jī)理是激活番木瓜內(nèi)源抗病基因,從而達(dá)到抗病效果。前人研究發(fā)現(xiàn),番木瓜CpTIFY10A-like基因(GenBank登錄號XM_022035541.1)是在禾甲安防治PRSV過程中表達(dá)上調(diào)的基因之一(安娜,2018),推測其是番木瓜內(nèi)源抗病基因。因此,開展番木瓜CpTIFY10A-like基因克隆及表達(dá)分析對PRSV防治具有重要意義。【前人研究進(jìn)展】CpTIFY10A-like屬于TIFY蛋白家族,該家族具有特定的TIFY結(jié)構(gòu)域,稱為花序分生組織中表達(dá)的鋅指蛋白(ZIM)結(jié)構(gòu)域,包含約28個(gè)氨基酸和1個(gè)核心基因基序,其中甘氨酸保守存在,其余氨基酸可變(周明,2013),表達(dá)的相關(guān)蛋白分別為JAZ、TIFY、zimlike(ZML)和PEAPOD(PPD)蛋白(Ebel et al.,2018)。這些蛋白參與茉莉酸通路的應(yīng)激反應(yīng),同時(shí)與其他轉(zhuǎn)錄因子相互作用,在植物的生長發(fā)育過程中發(fā)揮重要調(diào)節(jié)作用(Vanholme et al.,2007;Bai et al.,2011)。Vanholme等(2007)在擬南芥中克隆獲得18個(gè)表達(dá)TIFY蛋白的基因;Zhu等(2013)通過轉(zhuǎn)錄組分析發(fā)現(xiàn),栽培大豆中的GsTIFY-10b、GsTIFY-10c和GsTIFY-10d等基因在碳酸鹽脅迫條件下上調(diào)表達(dá),說明TIFY基因家族成員在植物環(huán)境脅迫響應(yīng)中發(fā)揮重要作用;Huang等(2016)對毛竹中的24個(gè)TIFY基因家族成員進(jìn)行分類、鑒別和系統(tǒng)發(fā)育分析,揭示了部分TIFY基因家族成員參與非生物脅迫;Zhao等(2016)研究發(fā)現(xiàn),干旱條件下棉花TIFY基因家族成員均高效表達(dá);孫程(2013)研究發(fā)現(xiàn),玉米TIFY基因家族成員具有響應(yīng)激素和脅迫的能力。【本研究切入點(diǎn)】目前,國內(nèi)外有關(guān)番木瓜抗PRSV的功能基因的研究報(bào)道較少?!緮M解決的關(guān)鍵問題】基于本課題組前期試驗(yàn)所得的抗PRSV轉(zhuǎn)錄組數(shù)據(jù)(安娜,2018),通過RACE克隆CpTIFY10A-like基因全長序列及對其進(jìn)行生物信息學(xué)分析,實(shí)時(shí)熒光定量PCR(qRT-PCR)檢測CpTIFY10A-like基因表達(dá)情況,并構(gòu)建其原核表達(dá)載體分析該基因表達(dá)蛋白的情況,為探索CpTIFY10A-like基因的抗病分子機(jī)制打下基礎(chǔ)。
1 材料與方法
1. 1 試驗(yàn)材料
供試材料為番木瓜品種臺農(nóng)二號,種植于海南大學(xué)農(nóng)科試驗(yàn)基地。本生煙草由中國熱帶農(nóng)業(yè)科學(xué)院生物所提供。禾甲安購自山東三碘生化有限公司;植物總RNA提取的試劑盒購自天根生化科技(北京)公司;cDNA反轉(zhuǎn)錄試劑盒購自北京全式金生物技術(shù)有限公司;SMARTer RACE 5'/3' Kit試劑盒、BamH I酶、Xho I酶和T4連接酶購自TaKaRa公司;IPTG和5×SDS-PAGE Loading Buffer購自廣州賽國生物科技有限公司;大腸桿菌DH5α感受態(tài)細(xì)胞購自諾唯贊生物科技股份有限公司;Rosetta(DE3)購自上海唯地生物技術(shù)有限公司;質(zhì)粒pET28a-sumo購自武漢淼靈生物科技有限公司;qRT-PCR試劑盒購自普洛麥格(北京)生物技術(shù)有限公司。主要儀器設(shè)備:AGT9601 96孔PCR儀(杭州安杰思醫(yī)學(xué)科技股份有限公司)、Mini-ES2電泳儀(杭州奧盛儀器有限公司)和Stratagene Mx3005P qRT-PCR儀(美國安捷倫公司)。
1. 2 試驗(yàn)方法
1. 2. 1 總RNA提取及反轉(zhuǎn)錄cDNA合成 采集番木瓜葉片,參照離心柱型植物總RNA提取試劑盒說明提取其RNA,并利用TransScript One-Step gDNA Removal and cDNA Synthesis SuperMix試劑盒反轉(zhuǎn)錄合成cDNA模板,具體反應(yīng)程序:25 ℃ 10 min,42 ℃ 30 min,85 ℃ 5 s,4 ℃恒溫。合成的cDNA置于-20 ℃保存?zhèn)溆谩?/p>
1. 2. 2 CpTIFY10A-like基因克隆 以番木瓜葉片總RNA反轉(zhuǎn)錄合成的cDNA為模板進(jìn)行PCR擴(kuò)增,參考本課題組前期試驗(yàn)的抗PRSV轉(zhuǎn)錄組數(shù)據(jù)注釋信息,使用Primer 5.0進(jìn)行引物設(shè)計(jì)。5'-RACE和3'-RACE克隆參照RACE試劑盒說明進(jìn)行操作(Yeku and Frohman,2003)。使用引物為表1中的5'RACE、3'RACE、T0和T1,對CpTIFY10A-like基因的5'端和3'端進(jìn)行克隆。RACE反應(yīng)體系50.0 μL:15.5 μL PCR-Grade H2O,2.5 μL cDNA模板,1.0 μL特異性引物(GSP),25.0 μL SeqampTM Buffer(2×),1.0 μL SeqAmp DNA聚合酶,5.0 μL 10×UPM(上、下游混合物,T0+T1)。擴(kuò)增程序:94 ℃預(yù)變性2 min;94 ℃ 30 s,68 ℃ 30 s,72 ℃ 3 min,進(jìn)行25個(gè)循環(huán);72 ℃延伸5 min。CpTIFY10A-like基因中間片段克隆引物為表1中的1667-F和1667-R。反應(yīng)體系50.0 μL:5.0 μL LA Taq Buffer II(10×),2.5 μL cDNA模板,30.0 μL PCR-Grade H2O,10 μmol/L 1667-F和1667-R各2.0 μL,0.5 μL LA Taq DNA聚合酶,8.0 μL dNTP Mixture。擴(kuò)增程序:96 ℃預(yù)變性3 min;96 ℃ 30 s,58 ℃ 20 s,72 ℃ 50 s,進(jìn)行35個(gè)循環(huán);72 ℃延伸3 min,16 ℃,1 min。PCR產(chǎn)物采用1%瓊脂糖凝膠電泳進(jìn)行檢測,切膠回收純化目標(biāo)條帶,利用T/A連接試劑盒連接至pMD19-T載體后轉(zhuǎn)化DH5α感受態(tài)細(xì)胞,挑取單克隆菌株進(jìn)行菌液PCR鑒定,將陽性克隆送至天一輝遠(yuǎn)生物科技有限公司進(jìn)行測序。使用DNAMAN對CpTIFY10A-like基因片段及其5'-RACE和3'-RACE進(jìn)行堿基序列拼接。
1. 2. 3 生物信息學(xué)分析 使用ExPASy ProtParam在線工具分析CpTIFY10A-like蛋白的理化性質(zhì);利用ProtScale預(yù)測CpTIFY10A-like蛋白的親/疏水性(Zhang et al.,2019);使用DNAMAN對CpTIFY10A-like蛋白進(jìn)行同源性比對;采用WoLF PSORT對CpTIFY10A-like蛋白進(jìn)行亞細(xì)胞定位;運(yùn)用IBCP在線工具SOPMA預(yù)測CpTIFY10A-like蛋白的二級結(jié)構(gòu)(Geourjon and Deléage,1996)。將CpTIFY10A-like蛋白的氨基酸序列提交至NCBI數(shù)據(jù)庫中與酸棗(XM_016011994.1)和白梨(XM-009338910.2)的同源蛋白進(jìn)行BLAST比對。運(yùn)用MEGA 6.0的鄰接法構(gòu)建系統(tǒng)發(fā)育進(jìn)化樹(Hall,2013),主要參數(shù)設(shè)置為距離模型:Maximum composite likelihood;穩(wěn)健性檢測:Bootstrap法;重復(fù)次數(shù):1800次;空位缺失數(shù)據(jù)的處理:Complete deletion。
1. 2. 4 qRT-PCR檢測 本課題組前期對番木瓜葉片感染的PRSV進(jìn)行RT-PCR檢測,同時(shí)在形態(tài)學(xué)、細(xì)胞學(xué)和分子生物學(xué)方面均對PRSV進(jìn)行充分鑒定(安娜,2018)。利用鑒定的PRSV對3月齡番木瓜植株進(jìn)行不同處理,以感染PRSV且出現(xiàn)病癥的植株(CK+)、1.0 mL/L禾甲安灌施感染PRSV且出現(xiàn)病癥的植株(B)為處理組,以清水灌施(不添加禾甲安)不感染PRSV的植株(CK-)為對照組,處理1次后,給CK-、CK+和B組正常澆水施肥培養(yǎng),5 d后采集不同處理番木瓜葉片,以其cDNA為模板,利用Eastep? qPCR Master Mix Kit試劑對葉片中的PRSV基因和CpTIFY10A-like基因進(jìn)行qRT-PCR檢測。反應(yīng)體系20.0 μL:10.0 μL Eastep? qPCR Master Mix(2×),2.0 μL cDNA模板,10 μmol/L上、下游引物(PRSV-F和PRSV-R/TIFY-F和TIFY-R)各0.4 μL,Nuclease-Free Water補(bǔ)足至20.0 μL。以Actin為內(nèi)參基因,其qRT-PCR引物見表2。qRT-PCR擴(kuò)增程序:95 ℃預(yù)變性10 min;95 ℃ 30 s,58 ℃ 30 s,72 ℃ 30 s,進(jìn)行45個(gè)循環(huán),在55 ℃退火結(jié)束時(shí)讀取熒光信號。然后測定熔解曲線,熔解曲線步驟:95 ℃預(yù)變性30 s,55~95 ℃升溫全過程連續(xù)讀取熒光信號,最后進(jìn)行數(shù)據(jù)分析。
1. 2. 5 原核表達(dá)載體構(gòu)建 使用Primer 5.0設(shè)計(jì)原核表達(dá)的CpTIFY10A-like基因編碼區(qū)序列(CDS)的上游引物(5'-CGCGGATCCATGTCGAATTCGCCT GAG-3',下劃線處為BamH I酶切位點(diǎn))和下游引物(5'-CCGCTCGAGCTACTGTAACAATGGTGATTGA G-3',下劃線處為Xho I酶切位點(diǎn)),用于目的基因CpTIFY10A-like PCR擴(kuò)增。反應(yīng)體系50.0 μL:2.5 μL cDNA模板,30.0 μL PCR-Grade H2O,10 μmol/L的上、下游引物各2.0 μL,0.5 μL LA Taq DNA聚合酶,5.0 μL 10×LA Taq Buffer II和8.0 μL dNTP Mixture。擴(kuò)增程序:96 ℃預(yù)變性3 min;96 ℃ 30 s,58 ℃ 20 s,72 ℃ 3 min,進(jìn)行35個(gè)循環(huán);72 ℃延伸5 min。利用BamH I和Xho I雙酶切PCR擴(kuò)增目的基因和表達(dá)質(zhì)粒pET28a-sumo 5 h,T4連接酶16 ℃過夜連接,轉(zhuǎn)化Rosetta(DE3)感受態(tài)細(xì)胞,菌液PCR驗(yàn)證后挑取陽性單克隆送天一輝遠(yuǎn)生物科技有限公司測序。測序正確后,將轉(zhuǎn)化菌株接種于LB液體培養(yǎng)基中搖菌OD600為0.6時(shí),加入不同濃度(0.5、0.8和1.0 mmol/L)的IPTG,16 ℃下過夜誘導(dǎo)蛋白表達(dá),以不加IPTG誘導(dǎo)為對照,然后加入5×SDS-PAGE Loading Buffer,100 ℃煮沸10 min,經(jīng)SDS-PAGE檢測蛋白的表達(dá)效果。
1. 3 統(tǒng)計(jì)分析
采用2-△△Ct法計(jì)算目的基因的相對表達(dá)量(Livak and Schmittegen,2001),試驗(yàn)所得數(shù)據(jù)采用Excel 2010進(jìn)行統(tǒng)計(jì)分析及圖表繪制,運(yùn)用SPSS 22.0進(jìn)行方差分析和顯著性分析。
2 結(jié)果與分析
2. 1 番木瓜葉片總RNA提取結(jié)果
番木瓜葉片總RNA電泳結(jié)果如圖1所示,28S條帶和18S條帶明顯亮于5S條帶,表明提取的RNA效果較好,可用于后續(xù)研究。
2. 2 CpTIFY10A-like基因克隆結(jié)果
3'-RACE克隆片段長度584 bp(圖2-A),5'-RACE克隆片段長度630 bp(圖2-B),CpTIFY10A-like基因中間片段長度1027 bp(圖2-C),最后拼接獲得CpTIFY10A-like基因全長為1352 bp。將其提交至NCBI數(shù)據(jù)庫進(jìn)行BLAST對比,結(jié)果發(fā)現(xiàn)與已發(fā)表的番木瓜CpTIFY10A-like基因(XM_022035541.1)的核苷酸序列同源性達(dá)100%,CDS序列為822 bp,證明克隆獲得的CpTIFY10A-like基因?qū)儆谝阎蛄?,且真?shí)存在,可用于后續(xù)基因功能驗(yàn)證。
2. 3 生物信息學(xué)分析結(jié)果
使用ExPASy ProtParam在線軟件分析CpTIFY10A-like蛋白理化性質(zhì),結(jié)果顯示CpTIFY10A-like蛋白由273個(gè)氨基酸殘基組成,理論分子量29.36 kD,分子式C1283H2054N356O407S12,理論等電點(diǎn)(pI)9.23,為堿性蛋白。CpTIFY10A-like蛋白的不穩(wěn)定系數(shù)62.97,親水性平均系數(shù)-0.458,為不穩(wěn)定的親水性蛋白(圖3)。使用WoLF PSORT進(jìn)行CpTIFY10A-like蛋白亞細(xì)胞定位,結(jié)果顯示核定位系數(shù)8.0,核質(zhì)體定位系數(shù)6.0,葉綠體定位系數(shù)2.0,線粒體定位系數(shù)2.0,質(zhì)體的定位系數(shù)2.0,表明CpTIFY10A-like蛋白定位于細(xì)胞核。利用SOPMA在線分析CpTIFY10A-like蛋白二級結(jié)構(gòu),結(jié)果如圖4所示,α-螺旋占15.02%,延伸鏈占8.42%,β-折疊占2.20%,無規(guī)則卷曲占74.36%,說明該蛋白二級結(jié)構(gòu)以無規(guī)則卷曲和α-螺旋為主,同時(shí)含有少量的β-折疊和延伸鏈。
2. 4 CpTIFY10A-like基因同源性分析結(jié)果
將CpTIFY10A-like基因編碼蛋白的氨基酸序列提交至NCBI數(shù)據(jù)庫中進(jìn)行BLAST比對,結(jié)果顯示其與酸棗和白梨TIFY蛋白的氨基酸序列相似性達(dá)83.21%和81.02%,且多序列比對分析顯示三者均含有特定的TIFY結(jié)構(gòu)域(圖5)。將CpTIFY10A-like基因與NCBI數(shù)據(jù)庫中同源性較高的物種TIFY基因進(jìn)行系統(tǒng)發(fā)育進(jìn)化分析,結(jié)果(圖6)顯示CpTIFY10A-like基因與酸棗和白梨的TIFY基因聚為同一分支,即三者親緣關(guān)系較近。
2. 5 qRT-PCR檢測結(jié)果
qRT-PCR檢測結(jié)果(圖7)顯示,不同處理下PRSV基因的相對表達(dá)量排序?yàn)镃K+(1.02)>B(0.39)>CK-(0),三者存在顯著差異(P<0.05,下同);CpTIFY10A-like基因的相對表達(dá)量排序?yàn)锽(53.12)>CK+(1.15)>CK-(1.02),其中B處理與CK+處理存在顯著差異(圖8)。結(jié)合圖7和圖8可知,在經(jīng)禾甲安處理后的感病植株中CpTIFY10A-like基因表達(dá)量顯著升高,而PRSV基因表達(dá)量顯著降低,說明禾甲安可誘導(dǎo)CpTIFY10A-like基因高效表達(dá),且CpTIFY10A-like基因在植株抗PRSV過程中發(fā)揮重要調(diào)控作用。
2. 6 CpTIFY10A-like基因原核表達(dá)分析結(jié)果
由菌液PCR驗(yàn)證結(jié)果(圖9)和測序結(jié)果可知,構(gòu)建的重組質(zhì)粒中已成功插入目標(biāo)片段(CpTIFY10A-like基因CDS序列為822 bp),表明成功獲得重組質(zhì)粒pET28a-CpTIFY10A-like-sumo。由圖10可知,與對照(泳道1)相比,泳道2、3和4在26~33 kD之間有明顯條帶,與CpTIFY10A-like蛋白的理論分子量29.36 kD基本相符,且不同濃度IPTG誘導(dǎo)下,IPTG濃度越高,蛋白表達(dá)量越多,表明CpTIFY10A-like蛋白在原核細(xì)胞中成功表達(dá)。
3 討論
禾甲安可促使番木瓜體內(nèi)抗病性酶活升高,從而起到防治番木瓜環(huán)斑病害的作用(張芮寧等,2020)。在分子層面上發(fā)現(xiàn)禾甲安的施加會誘導(dǎo)番木瓜體內(nèi)抗病相關(guān)基因表達(dá),從而達(dá)到抗PRSV的效果,而CpTIFY10A-like基因就是其中的一個(gè)抗病基因(安娜,2018)。TIFY基因家族廣泛存在于陸地植物中(Bai et al.,2011)。本研究的多重序列對比結(jié)果顯示,CpTIFY10A-like蛋白與其他物種如擬南芥和紫花苜蓿TIFY蛋白均含有特定的TIFY結(jié)構(gòu)域(Ming et al.,2008;Zhu et al.,2014)。前人研究發(fā)現(xiàn),擬南芥、番茄和馬鈴薯中的TIFY基因家族成員均能影響茉莉酸合成(Grunewald,2009;胡利宗等,2017)。本課題組前期通過轉(zhuǎn)錄組數(shù)據(jù)分析獲得的KEGG通路如圖11所示,CpTIFY10A-like基因作用于茉莉酸合成通路上,而茉莉酸又與植物的抗病性相關(guān)(Vanholme et al.,2007;安娜,2018),故推測CpTIFY10A-like基因參與番木瓜抗逆響應(yīng)過程。本研究的qRT-PCR檢測結(jié)果顯示,在經(jīng)禾甲安處理后的感病植株中CpTIFY10A-like基因表達(dá)量顯著升高,而PRSV基因表達(dá)量顯著降低,推測禾甲安可誘導(dǎo)CpTIFY10A-like基因高效表達(dá),致使PRSV基因表達(dá)量大幅度降低,與霍鵬(2015)研究發(fā)現(xiàn)番木瓜通過eIF4E基因沉默以抵抗PRSV的結(jié)果相似。此外,本研究通過原核表達(dá)分析可知,CpTIFY10A-like基因可在原核細(xì)胞中表達(dá),今后可通過相關(guān)次生代謝產(chǎn)物和體外蛋白研究進(jìn)一步探究其抗PRSV的作用機(jī)理。
本研究通過分析番木瓜CpTIFY10A-like基因的生物學(xué)信息、抗病表達(dá)量和原核表達(dá)效果,為今后深入探索CpTIFY10A-like基因的功能及表達(dá)蛋白互作提供理論參考,同時(shí)為研究CpTIFY10A-like基因在番木瓜抗PRSV病毒病過程的分子調(diào)控機(jī)理打下基礎(chǔ),對番木瓜抗病育種具有重要意義。
4 結(jié)論
禾甲安可誘導(dǎo)CpTIFY10A-like基因高效表達(dá),進(jìn)而通過茉莉酸通路起調(diào)節(jié)作用以抵抗PRSV感染,即CpTIFY10A-like基因在番木瓜抗PRSV過程中發(fā)揮重要調(diào)控作用。
參考文獻(xiàn):
安娜. 2018. CTS-N誘導(dǎo)下番木瓜對環(huán)斑病毒病抗性研究[D]. 海口:海南大學(xué). [An N. 2018. Study on the resistance of papaya to ringspot virus induced by CTS-N[D]. Haikou:Hainan University.]
陳豪軍,潘祖建,周全光,甘衛(wèi)堂. 2013. 番木瓜優(yōu)良品種的引進(jìn)與選育研究[J]. 中國南方果樹,42(6):59-63. [Chen H J,Pan Z J,Zhou Q G,Gan W T. 2013. Study on the introduction and breeding of excellent papaya varieties[J]. South China Fruits,42(6):59-63.]
胡利宗,王俊生,趙錦慧,王秋霞,韓嬌月,紀(jì)秀娥. 2017. 番茄與馬鈴薯TIFY家族基因的鑒定與比較分析[J]. 分子植物育種,15(4):1192-1203. [Hu L Z,Wang J S,Zhao J H,Wang Q X,Han J Y,Ji X E. 2017. Identification and comparative analysis of the TIFY family genes in tomato and potato[J]. Molecular Plant Breeding,15(4):1192-1203.]
霍鵬. 2015. 利用多重?zé)晒舛縋CR鑒定番木瓜病毒及番木瓜eIF4E家族基因干擾效應(yīng)研究[D]. ??冢汉D洗髮W(xué). [Huo P. 2015. Study on the interference effects of papaya virus and papaya eIF4E family genes by multiplex fluorescent quantitative PCR[D]. Haikou:Hainan University.]
孫程. 2013. 玉米TIFY家族ZmJAZ14基因的功能驗(yàn)證[D]. 北京:中國農(nóng)業(yè)科學(xué)院. [Sun C. 2013. Functional verification of the ZmJAZ14 gene in the TIFY family of maize [D]. Beijing:Chinese Academy of Agricultural Sciences.]
鄢興祥,李萍,陳萍,樊俊華,劉蕤丹,張榮萍. 2019. 4種生物農(nóng)藥抗番木瓜花葉病毒病的效果及其生理基礎(chǔ)研究[J]. 中國南方果樹,48(2):75-81. [Yan X X,Li P,Chen P,F(xiàn)an J H,Liu Y D,Zhang R P. 2019. Effects of four biological pesticides on papaya mosaic virus disease and its physiological basis[J]. South China Fruits,48(2):75-81.]
張榮萍,樊俊華,陳慧娟,鄢興祥,陳萍. 2017. 3種生物農(nóng)藥對番木瓜環(huán)斑病的防效研究[J]. 中國南方果樹,46(3):79-82. [Zhang R P,F(xiàn)an J H,Chen H J,Yan X X,Chen P. 2017. Study on the control effect of three biological pesticides on papaya ring spot disease[J]. South China Fruits, 46(3):79-82.]
張芮寧,袁舟宇,陳萍. 2020. 禾生素在植物中的應(yīng)用研究進(jìn)展[J]. 南方農(nóng)業(yè),14(5):117-120. [Zhang R N,Yuan Z Y,Chen P. 2020. Research progress of the application of CTS-N in plants[J]. South China Agriculture,14(5):117-120.]
周明. 2013. 玉米TIFY/JAZ蛋白全基因組分析[D]. 雅安:四川農(nóng)業(yè)大學(xué). [Zhou M. 2013. Whole-genome analysis of maize TIFY/JAZ protein[D]. Yaan:Sichuan Agricultu-ral University.]
Bai Y H,Meng Y J,Huang D L,Qi Y H,Chen M. 2011. Origin and evolutionary analysis of the plant-specific TIFY transcription factor family[J]. Genomics,98(2):128-136.
Bau H J,Kung Y J,Raja J A,Chen S J,Chen K C,Chen Y. K,Wu H W,Yeh S D. 2008. Potential threat of a new pathotype of papaya leaf distortion mosaic virus infecting transgenic papaya resistant to papaya ringspot virus[J]. Phytopathology,98(7):848-856.
Ebel C,Benfeki A,Hanin M,Solano R,ChiniA. 2018. Characterization of wheat(Triticum aestivum)TIFY family and role of Triticum durum TdTIFY11a in salt stress tolerance[J]. PLoS One,13(7):e0200566.
Geourjon C,Deléage G. 1996. SOPMA:Significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments[J]. Computer Applications in the Biosciences Cabios,11(6):681-684.
Grunewald W,Vanholme B,Pauwels L,Plovie E,Inzé D,Gheysen G,Goossens A. 2009. Expression of the Arabidopsis jasmonate signalling repressor JAZ1/TIFY10A is stimulated by auxin[J]. EMBO Reports,10(8):923-928.
Hall B G. 2013. Building phylogenetic trees from molecular data with MEGA[J]. Molecular Biology and Evolution(5):5.
Huang Z,Jin S H,Guo H D,Zhong X J,He J,Li X,Jiang M Y,Yu X F,Long H,Ma M D,Chen Q B. 2016. Genome-wide identification and characterization of TIFY family genes in Moso Bamboo(Phyllostachys edulis) and expression profiling analysis under dehydration and cold stresses[J]. PeerJ,4(10):e2620. doi:10.7717/peerj.2620.
Livak K J,Schmittgen T D. 2000. Analysis of relative gene expression data using real-time quantitative PCR and the 2-△△Ct method[J]. Methods,25(4):402-408.
Ming R,Hou S B,F(xiàn)eng Y,Yu Q G,Alexandre D L,Jimmy H S,Pavel S,Wang W,Benjamin V L,Kanako L T,Lewis,Steven L S,Lu F,Meghan R J ,Rachel L S,Jan E M,Chen C X,Qian W B,Shen J G,Du P,Moriah E,Eric T,Tang H B,Eric L,Robert E P,Todd P M,Kerr W,Danny W R,Henrik A,Wang M L,Zhu Y J,Michael S,Niranjan N,Ricelle A A,Peizhu G,Andrea B,Wai C M,Christine M A,Ren Y,Liu C,Wang J M,Wang J P,Na J K,Eugene V S,Brian H,Jyothi T,David N,Wang X Y,John E B,Andrea R G,Arthur L D,Ratnesh S,Jon Y S,Savarni T,Kabi N,Wei H R,Beth I,Maya P,Jiang N,Zhang W L,Gernot P,Aaron W,Rafael N P,Manuel J T,F(xiàn)eltus A F,Brad P,Li Y J,Max B,Luo M C,Liu L,David A C,Stephen M M,Paul H M,Tak S,Jiang J M,Mary A S,Vikki F,Thomas M O,Dorothy E S,Claude W D,Jeffrey D P,Michael F,Andrew H P,Dennis G,Wang L,Maqsudul A. 2008. The draft genome of the transgenic tropical fruit tree papaya(Carica papaya Linnaeus)[J]. Nature,452(7190):991-996.
Tripathi S,Suzuki J Y,F(xiàn)erreira S A,Gonsalves D. 2010. Papaya ringspot virus-P:Characteristics,pathogenicity,sequence variability and control[J]. Molecular Plant Patho-logy,9(3):269-280.
Vanholme B,Grunewald W,Bateman A,Kohchi T,Gheysen G. 2007. The tify family previously known as ZIM[J]. Trends in Plant Science,12(6):239-244.
Yeku O,F(xiàn)rohman M A. 2003. Rapid amplification of cDNA ends(RACE)[J]. Methods in Molecular Biology,226(67):105.
Zhang G X,Wu Y G,Muhammad Z U H,Yang Y Z,Yu J,Zhang J F,Yang D M. 2019. cDNA cloning,prokaryotic expression and functional analysis of 3-hydroxy-3-me-thylglutaryl coenzyme a reductase(HMGCR) in Pogostemon cablin[J]. Protein Expression and Purification,163:105454.
Zhao G,Song Y,Wang C X,Hamama I B,Wang Q H,Zhang C J,Yang Z R,Liu Z,Chen E Y,Zhang X Y,Li F G. 2016. Genome-wide identification and functional analysis of the TIFY gene family in response to drought in cotton[J]. Molecular Genetics and Genomics,291(6):2173-2187.
Zhu D,Bai X,Luo X,Chen Q,Cai H,Ji W,Zhu Y M. 2013. Identification of wild soybean(Glycine soja) TIFY family genes and their expression profiling analysis under bicarbonate stress[J]. Plant Cell Reports,32(2):263-272.
Zhu D,Li R T,Liu X,Sun M Z,Wu J,Zhang N,Zhu Y M. 2014. The positive regulatory roles of the TIFY10 proteins in plant responses to alkaline stress[J]. PLoS One,9(11):e111984.
(責(zé)任編輯 陳 燕)