彭蘊,雷天剛,鄒修平,張靖蕓,張慶雯,姚家歡,何永睿,李強,陳善春
柑橘潰瘍病抗性SNP驗證及其相關(guān)鈣依賴性蛋白激酶基因誘導(dǎo)表達
彭蘊,雷天剛,鄒修平,張靖蕓,張慶雯,姚家歡,何永睿,李強,陳善春
(西南大學(xué)/中國農(nóng)業(yè)科學(xué)院柑桔研究所國家柑桔品種改良中心,重慶 400712)
【】前期根據(jù)轉(zhuǎn)錄組數(shù)據(jù)挖掘柑橘單核苷酸多態(tài)性(single nucleotide polymorphism,SNP)位點,通過關(guān)聯(lián)分析獲得14個與柑橘潰瘍病耐/感性關(guān)聯(lián)的SNP。以此為基礎(chǔ),本研究利用柑橘雜交群體驗證這些位點與柑橘潰瘍耐/感性的相關(guān)性,以期獲得顯著相關(guān)的SNP,并對其相關(guān)的基因進行柑橘潰瘍病菌(subsp.,)和植物激素誘導(dǎo)表達分析。以抗病和敏感柑橘品種及其雜交F1代群體共143個材料為試材,采用離體葉片針刺接種法進行潰瘍病抗性鑒定;利用高分辨率熔解曲線(high resolution melting,HRM)技術(shù),對F1群體進行SNP分型;使用DPS軟件對F1群體的潰瘍病耐/感性表型和SNP基因型進行相關(guān)分析;實時熒光定量PCR(quantitative real-time PCR,qRT-PCR)分析其中一個SNP相關(guān)的柑橘鈣依賴性蛋白激酶基因(calcium-dependent protein kinase gene,)的誘導(dǎo)表達模式。供試雜交F1代群體的病斑面積在0.75—3.29 mm2;病情指數(shù)在30.2—100,而抗病品種‘金彈’病情指數(shù)為11.1,敏感品種‘冰糖橙’病情指數(shù)為100。病情指數(shù)較低的雜交后代,其親本至少有1個為耐病性品種,母本耐病性強的居多。根據(jù)病情指數(shù)確定免疫材料1個,高抗17個,中抗31個,中感38個,高感56個。SNP分型結(jié)果顯示,14個SNP位點在143個供試材料間均有多態(tài)性,可分為3種不同的基因型,2種純合型和1種雜合型。簡單相關(guān)分析結(jié)果表明,多個SNP位點的基因型與病斑面積及病情指數(shù)相關(guān)性顯著。典型相關(guān)分析結(jié)果顯示,其中5個SNP位點與病斑面積相關(guān)性較高,相關(guān)系數(shù)絕對值均>0.2,其編號分別為HP31、HP42、HP85、HP87、HP170,可利用這5個SNP位點的基因型預(yù)測柑橘潰瘍病耐性的強弱。其中SNP位點HP31位于(CAP ID: Cs4g10370)的編碼區(qū),對柑橘離體葉片接種潰瘍病菌誘導(dǎo)處理6、12、24、48和72 h后進行基因相對表達量分析,發(fā)現(xiàn)‘金彈’(高抗)、‘新生系3號椪柑’(中抗)和‘冰糖橙’(高感)中該基因的表達量均呈先升后降趨勢,且均在48 h其相對表達量達到最高;接菌處理后12 h,‘金彈’中該基因的相對表達量為對照的3倍,而‘新生系3號椪柑’和‘冰糖橙’中無明顯差異。此外,受水楊酸(SA)、茉莉酸甲酯(MeJA)和脫落酸(ABA)誘導(dǎo)表達,且在不同潰瘍病耐/感性品種中該基因誘導(dǎo)表達的模式不同。獲得5個與潰瘍病耐/感性顯著相關(guān)的SNP,可用作柑橘潰瘍病耐/感性篩選標(biāo)記。SNP位點HP31相關(guān)的受潰瘍病菌和SA、MeJA和ABA誘導(dǎo)表達,該基因可能在柑橘應(yīng)答潰瘍病菌侵染的信號轉(zhuǎn)導(dǎo)過程中具有重要功能。
柑橘潰瘍病;柑橘潰瘍病菌;單核苷酸多態(tài)性;鈣依賴性蛋白激酶基因;誘導(dǎo)表達
【研究意義】柑橘潰瘍病(citrus bacterial canker,CBC)是世界柑橘產(chǎn)業(yè)的一種極具威脅性的檢疫性病害,現(xiàn)已在30多個國家和地區(qū)發(fā)生[1]。目前,柑橘潰瘍病沒有特別有效的防治藥劑,生產(chǎn)上主要采用噴施銅制劑、鏟除病樹等措施來防止病害的嚴重發(fā)生。銅制劑和農(nóng)業(yè)抗生素的大量施用不僅增加生產(chǎn)成本,而且還會對環(huán)境和人造成一定影響[2]。開發(fā)與柑橘潰瘍病耐/感性相關(guān)聯(lián)的單核苷酸多態(tài)性(single nucleotide polymorphism,SNP)標(biāo)記[3],分子標(biāo)記輔助選擇(marker-assisted selection,MAS),將大幅度提高柑橘潰瘍病抗性育種的效率[4]。【前人研究進展】大量研究表明,培育抗性品種是防治病蟲害最經(jīng)濟有效的方法之一[5],而雜交育種是柑橘新品種選育的主要途徑之一[6]。生產(chǎn)實踐證明,利用耐病品種作親本,選育的新品種對潰瘍病多具有較強的耐性[7-8]。傳統(tǒng)的潰瘍病抗性鑒定方法必須采用大量的離體葉片或田間活體接種潰瘍病菌(subsp.,)進行評價,這種方法不僅費力費時,且鑒定結(jié)果還易受環(huán)境溫度和濕度等因素的影響[9]。目前,分子標(biāo)記廣泛用于優(yōu)良性狀基因型選擇以改良作物品種[10-12]。KIM等[13]通過全基因組序列分析發(fā)現(xiàn),番茄青枯病感病品種和抗病品種之間存在多態(tài)性SNP,并可利用高分辨率熔解曲線(high resolution melting,HRM)技術(shù)有效鑒別抗性基因型,實現(xiàn)抗青枯病番茄品種的輔助選擇;在蘋果中利用分子標(biāo)記定位到蘋果白粉病抗性基因[14]以及蘋果黑星病抗性基因[15];劉升銳[16]構(gòu)建了柑橘高密度遺傳連鎖圖譜,利用分子標(biāo)記分析了控制枳落葉性狀的基因位點;Barba等[17]通過分子標(biāo)記鑒定出葡萄白粉病抗性和敏感性位點,確定了葡萄與白粉病抗性相關(guān)的SNP;據(jù)報道,柑橘中也開發(fā)出與柑橘雜色萎黃病[18]、柑橘麻風(fēng)病病毒[19]等抗病性相關(guān)的分子標(biāo)記。【本研究切入點】目前,柑橘潰瘍病抗性相關(guān)SNP的研究尚未見報道,筆者研究室前期基于轉(zhuǎn)錄組數(shù)據(jù)挖掘SNP位點,并以柑橘自然群體為材料,采用關(guān)聯(lián)分析法,篩選到14個與柑橘潰瘍病抗性關(guān)聯(lián)的SNP。本研究將進一步利用耐/感柑橘品種的雜交F1群體,采用離體葉片針刺接種法鑒定潰瘍病抗性表型,利用HRM技術(shù)進行SNP分型,采用相關(guān)性分析,驗證這14個柑橘潰瘍病抗性關(guān)聯(lián)SNP的可靠性。【擬解決的關(guān)鍵問題】篩選與潰瘍病耐/感性相關(guān)的SNP,以期獲得可用于柑橘潰瘍病抗性分子標(biāo)記輔助選擇的SNP,并分析SNP相關(guān)基因柑橘鈣依賴性蛋白激酶基因()受潰瘍病菌和激素誘導(dǎo)處理后的表達情況,為基因功能研究打下基礎(chǔ)。
試驗于2018年4月至2019年6月在西南大學(xué)柑桔研究所國家柑桔品種改良中心完成。
以對潰瘍病高抗的品種‘金彈’、中抗品種‘新生系3號椪柑’和敏感品種‘冰糖橙’,以及耐/感品種雜交F1代群體共143個材料為試材,其中‘沙田柚’♀ב梁平柚’♂雜交后代27個、‘沃柑’♀ב米柑’♂后代9個、‘茂谷柑’♀ב椪柑’♂后代17個、‘清見’♀ב冰糖橙’♂后代21個、‘沃柑’♀ב南豐蜜橘’♂后代15個、‘清見’♀ב南豐蜜橘’♂后代18個、‘清見’♀ב長葉香橙’♂后代33個。F1群體經(jīng)SSR分子標(biāo)記鑒定均為真實雜種。葉片均于2018年采自中國農(nóng)業(yè)科學(xué)院柑桔研究所國家柑桔品種改良中心育種圃。
1.2.1 潰瘍病抗性評價 采用離體葉片針刺接種法進行潰瘍病抗性鑒定,潰瘍病菌為亞洲種A株系(由柑桔研究所胡軍華老師提供),該病原菌接種‘晚錦橙’發(fā)病率高達91%,病情指數(shù)為73.3,病斑面積為4.5 mm2,單個病斑病原菌含量為2.99×106cfu/mm2。接種方法參照文獻[20],選取成熟度一致且完全展開的春梢葉片,經(jīng)75%的乙醇擦拭消毒后用滅菌水清洗干凈,無菌脫脂棉擦干葉片,用接種針(直徑為0.5 mm)在每片葉片的背面扎取4—6組小孔,每組6個;移液槍吸取1 μL濃度為105cfu/mL柑橘潰瘍病菌懸液接種到傷口,同時對照組接種無菌水。運用軟件Image J V1.47T統(tǒng)計病斑面積(lesion area,LA),按照病斑面積大小將病情分為6個等級,0級(LA<0.3 mm2),1級(0.3 mm2<LA≤0.6 mm2),3級(0.6 mm2<LA≤0.9 mm2),5級(0.9 mm2<LA≤1.2 mm2),7級(1.2 mm2<LA≤1.5 mm2),9級(LA>1.5 mm2),根據(jù)公式計算病情指數(shù)(disease index,DI),DI=100×Σ[(各級病斑數(shù)×相應(yīng)級數(shù)值)/(病斑總數(shù)×最大級數(shù))]。根據(jù)病情指數(shù)進行抗病性分級,病情指數(shù)≤20為免疫,20—40之間為高抗,40—60之間為中抗,60—80之間為中感,80—100為高感。
1.2.2 SNP分型 采用EASY spin植物DNA快速提取試劑盒(購自北京艾德萊公司)提取葉片DNA。14個SNP位點基因分型的擴增引物(表1)由英維捷基(上海)貿(mào)易有限公司合成。PCR反應(yīng)采用20 μL體系:13.4 μL H2O,0.3 μL 10 mmol·L-1上、下游引物,2 μL 10×buffer,1.6 μL 50 ng DNA,10 mmol·L-1dNTP,0.8 U DNA Taq酶。反應(yīng)條件:94℃預(yù)變性3 min;94℃ 30 s,58℃ 30 s,72℃ 1 min,共30個循環(huán);72℃延伸5 min。在高分辨率熔解曲線(HRM)儀LightScanner 96(Idaho Technology Inc.)上進行樣品SNP分型。

表1 SNP位點及高分辨率熔解曲線分型PCR引物
1.2.3生物信息學(xué)分析 從甜橙基因組數(shù)據(jù)庫(http://citrus.hzau.edu.cn/orange/)下載的核苷酸序列。利用Vector NTI軟件尋找開放閱讀框(ORF),翻譯出氨基酸序列;利用在線軟件預(yù)測氨基酸序列的分子量、理論等電點(https://web.expasy.org/ protparam/)[21]、基因內(nèi)含子、外顯子數(shù)及ORF范圍(http://gsds.cbi.pku.edu.cn/)、基因的功能結(jié)構(gòu)(http:// pfam.xfam.org/)、跨膜結(jié)構(gòu)域(http://www.cbs.dtu.dk/ services/TMHMM/)。
1.2.4誘導(dǎo)表達分析 以柑橘潰瘍病敏感品種‘冰糖橙’、中抗品種‘新生系3號椪柑’和高抗品種‘金彈’為試材,每個品種選3株樹,分別從每株的樹冠外圍選取24片完全展開且成熟度一致的春梢葉片混合為1個樣品,設(shè)置3個生物學(xué)重復(fù)。葉片清洗干凈后用75%酒精進行表面消毒,無菌水清洗3次,置于無菌培養(yǎng)皿中;用注射器將105cfu/mL的潰瘍病菌懸液注射入葉片下表皮,每個樣品均處理18片葉;用浸有10 μmol·L-1水楊酸(SA)溶液、100 μmol·L-1茉莉酸甲酯(MeJA)溶液和100 μmol·L-1脫落酸(ABA)溶液的無菌脫脂棉覆蓋不同品種葉片的葉柄部位。分別在處理后0、6、12、24、48、72 h從4種處理的樣品中隨機選取3片葉用刀片將處理部位切取下來混合,以無菌水處理的各品種為對照。用EASY spin 植物RNA快速提取試劑盒(購自北京艾德萊公司)提取總RNA[22],Prime ScriptTMRT reagent Kit 反轉(zhuǎn)錄試劑盒(TaKaRa公司)將RNA反轉(zhuǎn)錄成cDNA。特異性擴增引物(表2)由英維捷基(上海)貿(mào)易有限公司合成。以為內(nèi)參基因,采用實時熒光定量PCR(qRT-PCR)技術(shù)分析的相對表達量。采用20 μL反應(yīng)體系:10 μL 2×SYBRG PCR Master Mix,5 μL cDNA,各0.5 μL 10 mmol·L-1引物,4 μL H2O。擴增反應(yīng)在7500 Fast Real-Time PCR System(Applied Biosystem)上進行,反應(yīng)程序:95℃10 min;95℃15 s;60℃1 min;共40個循環(huán)。

表2 實時熒光定量PCR引物
1.2.5 數(shù)據(jù)分析 根據(jù)SNP基因型進行賦值,A/A和T/T賦值為-1,G/G和C/C賦值為1,雜合型均賦值為0。運用DPS軟件分析供試材料潰瘍病抗性表型(病斑面積和病情指數(shù))和SNP基因型的相關(guān)性;運用Excel軟件采用ΔΔCT法計算基因相對表達量。
采用針刺接種法對143個供試材料進行潰瘍病抗性離體鑒定,接菌10 d后拍照統(tǒng)計計算病斑面積,以敏感品種‘冰糖橙’和高抗品種‘金彈’作對照,根據(jù)病斑面積大小分級,計算材料的病情指數(shù)。結(jié)果顯示,雜交F1代群體病斑面積在0.75—3.29 mm2,而‘金彈’病斑面積為0.5 mm2,‘冰糖橙’病斑面積為3.69 mm2;雜交F1代群體的病情指數(shù)在30.2—100,對照‘金彈’的病情指數(shù)為11.1,‘冰糖橙’為100。發(fā)病程度較低的雜交后代,其親本至少有1個為耐病性品種,母本耐病性強的居多。但母本對潰瘍病敏感而父本耐病性強的雜交組合其F1代表現(xiàn)耐病性強的也較多,如‘沙田柚’♀ב梁平柚’♂、‘沃柑’♀ב南豐蜜橘’♂等雜交組合,其F1代中抗性表型為中抗以上的占近1/3。根據(jù)病情指數(shù)分級,143個供試材料中對潰瘍病抗性表現(xiàn)為免疫的1個(‘金彈’),高抗17個,中抗31個,中感38個,高感的56個。
采用HRM技術(shù)對143個供試材料進行SNP分型。結(jié)果顯示,驗證的14個SNP位點在供試材料間均有多態(tài)性,可分為3種不同的基因型,2種純合型和1種雜合型。如圖1為1個SNP位點(HP31)的HRM分型結(jié)果,143個供試材料被準(zhǔn)確地區(qū)分為A/A、G/G和A/G 3種基因型。
根據(jù)SNP分型結(jié)果對143個供試材料SNP位點的基因型進行賦值,運用DPS軟件對供試材料的基因型值和病斑面積及病情指數(shù)進行簡單相關(guān)和典型相關(guān)分析。簡單相關(guān)分析結(jié)果表明,多個SNP位點基因型與病斑面積及病情指數(shù)相關(guān)性顯著。而典型相關(guān)顯著性檢驗結(jié)果顯示,供試材料SNP基因型與病斑面積相關(guān)系數(shù)為0.4849,=0.0016<0.05,相關(guān)性顯著(表3);SNP基因型與病情指數(shù)相關(guān)系數(shù)0.3796,=0.088>0.05,兩者不相關(guān)。典型相關(guān)分析結(jié)果顯示,與病斑面積相關(guān)系數(shù)絕對值>0.2的SNP位點5個,分別是HP31、HP42、HP85、HP87、HP170(表4),表明這5個SNP與柑橘潰瘍病病斑面積相關(guān)性較高,可作為柑橘潰瘍病耐性材料篩選的候選SNP標(biāo)記。其中HP31為編碼區(qū)靠近5′ UTR端的SNP。

圖1 供試材料(SNPHP31)分型結(jié)果

表3 典型相關(guān)顯著性檢驗結(jié)果

表4 典型相關(guān)系數(shù)矩陣
位于基因組第4號染色體上,編號為Cs4g10370,全長5 162 bp(圖2-A)。結(jié)構(gòu)分析發(fā)現(xiàn)該基因由13個外顯子組成(圖2-B)。特定結(jié)構(gòu)域分析發(fā)現(xiàn)蛋白激酶結(jié)構(gòu)域(PKinase)位于1—236個氨基酸的位置;此外還含有4個螺旋-環(huán)-螺旋結(jié)構(gòu)域(EF hand)(圖2-C)。對進行跨膜區(qū)分析,發(fā)現(xiàn)在160—180個氨基酸的位置存在20個氨基酸的跨膜區(qū),1—159是在胞內(nèi)區(qū),181—615為胞外區(qū)(圖2-D、2-E)。
受潰瘍病菌誘導(dǎo)表達,接種后6、12、24、48和72 h,3個品種中基因的相對表達量基本呈逐漸升高再降低的趨勢,且均在處理后48 h相對表達量達到最高。接種后6 h,‘金彈’中相對表達量為0.7,而接種后48 h其相對表達量升至7.0;‘冰糖橙’和‘新生系3號椪柑’接種后48 h,基因相對表達量分別升至4.0和1.8,但與接種后6 h相比,表達量升高的幅度不明顯;接種后12 h,在高抗品種‘金彈’中相對表達量為對照的3倍,而此時‘新生系3號椪柑’和‘冰糖橙’中該基因相對表達量與對照無明顯差異。說明高抗品種‘金彈’可更早地響應(yīng)潰瘍病菌脅迫,并且‘金彈’中響應(yīng)脅迫的分子信號可迅速地調(diào)控大量表達(圖3-A)。

A:染色體定位Chromosome localization;B:基因結(jié)構(gòu)Gene structure;C:功能結(jié)構(gòu)域Functional domain;D:跨膜結(jié)構(gòu)Transmembrane structure;E:跨膜區(qū)預(yù)測Transmembrane domain prediction
利用MeJa誘導(dǎo)處理‘金彈’‘新生系3號椪柑’‘冰糖橙’后,相對表達量隨時間變化趨勢與潰瘍病菌處理類似。在處理后6 h相對表達量相對較高,但處理后12 h與對照無明顯差異;誘導(dǎo)處理后12—48 h,其相對表達量則呈逐漸升高的趨勢(圖3-B)。SA誘導(dǎo)處理后,各品種相對表達量變化均呈波動趨勢,‘金彈’在處理后24 h和48 h的相對表達量均在5倍左右,但72 h后表達量與對照無明顯差異;‘新生系3號椪柑’和‘冰糖橙’相對表達量分別在72 h和48 h達到最高(圖3-C)。ABA誘導(dǎo)處理后,‘金彈’中相對表達量變化趨勢與潰瘍病菌處理的變化趨勢大致相反,處理后6、24 h的表達量相對較高,而處理后48 h其表達量較低;‘新生系3號椪柑’和‘冰糖橙’在處理后48 h相對表達量達到最高(圖3-D)。
柑橘潰瘍病被國內(nèi)外列為檢疫性病害,給世界柑橘產(chǎn)業(yè)帶來了巨大的經(jīng)濟損失。栽培耐病品種在一定程度上可減輕潰瘍病對柑橘生產(chǎn)的影響,目前生產(chǎn)上已有一些對潰瘍病耐性較強的品種資源,如‘金柑’‘椪柑’‘南豐蜜橘’及其雜種后代。利用抗性資源進行品種改良是柑橘育種的一個重要方向。近年來,有研究者通過基因編輯技術(shù)修飾特定基因位點提高甜橙對潰瘍病的抗性[23],其實質(zhì)是改變敏感品種中特定基因的遺傳多態(tài)性。因此,利用含有抗性基因(純合型或雜合型)的品種資源作親本,采用常規(guī)雜交育種方法,經(jīng)過遺傳重組后也可能得到抗性提高的材料。但傳統(tǒng)的柑橘育種及潰瘍病抗性鑒定方法篩選效率不高,費時費力,若采用雜交育種法與抗性分子標(biāo)記輔助選擇相結(jié)合,將大大提篩選效率,加快育種進程。目前,在果樹中研究性狀關(guān)聯(lián)SNP的報道不少,例如利用桃果肉軟化性狀相關(guān)基因SNP鑒別桃果肉軟化程度不同品種[24],木瓜果皮紅色和黃色相關(guān)SNP[25],利用SNP區(qū)分杏甜味和苦味基因型[26]等。本研究在前期通過關(guān)聯(lián)分析發(fā)掘的14個與柑橘潰瘍病耐/感性關(guān)聯(lián)SNP基礎(chǔ)上,利用耐/感品種雜交后代進一步驗證這14個SNP與柑橘潰瘍病耐/感性的相關(guān)性。結(jié)果發(fā)現(xiàn),其中至少5個SNP與柑橘的潰瘍病病斑面積存在顯著相關(guān)性,這些SNP的獲得為今后柑橘潰瘍病抗性材料的篩選鑒定打下了基礎(chǔ)。

A:潰瘍病菌誘導(dǎo)處理Xcc inductiontreatment;B:茉莉酸甲酯誘導(dǎo)處理MeJa induction treatment;C:水楊酸誘導(dǎo)處理SA induction treatment;D:脫落酸誘導(dǎo)處理ABA induction treatment
5個與柑橘潰瘍病耐性存在顯著相關(guān)性的SNP,其中1個為編碼區(qū)的單核苷酸變異。CDPK是一種重要的調(diào)節(jié)蛋白[27],1987年Harmon 等在豌豆中首次發(fā)現(xiàn)CDPK[28],經(jīng)過幾十年不斷研究,發(fā)現(xiàn)CDPK廣泛存在于植物、綠藻及頂復(fù)門原蟲等生物中,但不存在于哺乳動物中[29]。CDPK通過識別胞內(nèi)Ca2+信號,在植物莖和根發(fā)育、花粉管生長、氣孔開閉、激素信號傳導(dǎo)及響應(yīng)逆境脅迫過程中發(fā)揮關(guān)鍵作用[30]。在擬南芥中(CPK10)和(CPK11)響應(yīng)干旱和高鹽度誘導(dǎo)[31]。水稻突變體可導(dǎo)致葉片的過早衰老,的過量表達導(dǎo)致其生育期延遲[32]。CDPK在植物激素信號轉(zhuǎn)導(dǎo)中也具有重要作用,在擬南芥中普遍表達并定位于細胞質(zhì)和細胞核[33],RNAi株系在種子萌發(fā)過程和萌發(fā)后的生長中表現(xiàn)出對ABA的極度敏感性[34]。Botella等[35]發(fā)現(xiàn)生長素處理能夠使綠豆插條上調(diào)表達;Breviario等[36]在ABA信號研究中發(fā)現(xiàn),ABA處理能夠抑制水稻胚芽鞘的伸長,同時也抑制了水稻cDNA()的mRNA表達。植物能夠成功抵御微生物的侵染,主要是依靠早期對病原體的識別,從而誘導(dǎo)多種信號傳導(dǎo)途徑以啟動多元防御反應(yīng)。在基因間反應(yīng)中抑制病原體則需要植物抗性基因,使得攜帶相應(yīng)無毒基因的病原體產(chǎn)生抗體,ROMEIS等[37]在轉(zhuǎn)基因煙草植株研究中發(fā)現(xiàn)參與(番茄的抗真菌病原體基因)和(對應(yīng)的無毒性基因)介導(dǎo)植物防御反應(yīng)信號的轉(zhuǎn)導(dǎo),可引起磷酸化從而使其活化。近年的研究表明在從枝菌根、根瘤菌-宿主植物共生體系中起重要的調(diào)控作用,如上調(diào)表達參與水稻菌根早期共生[38]。大豆中通過磷酸化調(diào)控根瘤特異蛋白Nodulin26,從而參與調(diào)控根瘤的發(fā)生[39]。本研究對柑橘中與潰瘍病抗性相關(guān)SNP的進行生物信息學(xué)分析,發(fā)現(xiàn)CsCDPK為一個跨膜蛋白,預(yù)測其功能可能與信號轉(zhuǎn)導(dǎo)有關(guān)。利用潰瘍病菌和3種激素對3個耐病性不同品種進行誘導(dǎo)處理,分析該基因的表達量變化,結(jié)果發(fā)現(xiàn)受潰瘍病菌和SA、MeJa和ABA誘導(dǎo)表達,但在不同品種中表達模式不同。SA、MeJa和ABA在植物對逆境脅迫的應(yīng)答過程中起到至關(guān)重要的作用,是植物應(yīng)答逆境脅迫的重要調(diào)控因子。因此,筆者推測可能參與柑橘對潰瘍病及其他非生物逆境脅迫信號轉(zhuǎn)導(dǎo)過程的調(diào)控。
驗證的14個SNP位點中,5個SNP與柑橘的潰瘍病病斑面積顯著相關(guān),可作為柑橘潰瘍病耐性篩選的SNP標(biāo)記。柑橘鈣依賴性蛋白激酶基因()受潰瘍病菌和SA、MeJa及ABA誘導(dǎo)表達,該基因可能在柑橘應(yīng)答潰瘍病等逆境脅迫過程中發(fā)揮作用。
[1] SENDIN L N, Filippone M P. The genetic transformation of sweet orange (L. Osbeck) for enhanced resistance to citrus canker: methods and protocols//, 2019: 179-190.
[2] Kah M, Navarro D, Kookana R S, Kirby J K, Santra S, Ozcan A, Kabiri S. Impact of (nano)formulations on the distribution and wash-off of copper pesticides and fertilisers applied on citrus leaves., 2019, 16(6): 401-410.
[3] Perkel J. SNP genotyping: six technologies that keyed a revolution., 2008, 5(5): 447-453.
[4] Dong Q H, Cao X, Yang G, YU H P, NICHOLAS K K, WANG C, FANG J G. Discovery and characterization of SNPs inand genetic assessment of some grapevine cultivars., 2010, 125(3): 233-238.
[5] BEHLAU F, CANTEROS B I, MINSAVAGE G V, JONES J B, GRAHAM J H. Molecular characterization of copper resistance genes fromsubsp.andsubsp.., 2011, 77(12): 4089-4096.
[6] 向旭. 柑桔抗病分子育種研究進展. 分子植物育種, 2006, 4(2): 262-268.
XIANG X. Progresses on molecular breeding for citrus disease resistance.,2006, 4(2): 262-268. (in Chinese)
[7] Deng Z A, Xiao S Y, HUANG S, Jr. Gmitter F G. Development and characterization of SCAR markers linked to the citrus tristeza virus resistance gene from., 1997, 40(5): 697-704.
[8] Ling P, Duncan L W, Deng Z, Dunn D, Hu X, Huang S, Jr.Gmitter F G. Inheritance of citrus nematode resistance and its linkage with molecular markers., 2000, 100(7): 1010-1017.
[9] 譚李梅, 劉慧, 朱志媚, 周東, 湯甜, 鄧子牛. 檸檬自交后代抗柑橘潰瘍病的離體鑒定. 湖南農(nóng)業(yè)科學(xué), 2017(3): 58-62.
TAN L M, LIU H, ZHU Z M, ZHOU D, TANG T, DENG Z N. Vitro identification of lemon self-crossed seedlings for the resistance to citrus canker disease., 2017(3): 58-62. (in Chinese)
[10] Randhawa H S, Asif M, Pozniak C, Clarke J M, Graf R J, Fox S L, HUMPHREYS D G, KNOX R E, DEPAUW R M, SINGH A K, CUTHBERT R D, HUCL P, SPANER D. Application of molecular markers to wheat breeding in Canada.,2013, 132(5): 458-471.
[11] Ribaut J M, Hoisington D. Marker-assisted selection: new tools and strategies., 1998, 3(6): 236-239.
[12] Liu Z J, Cordesb J F. DNA marker technologies and their applications in aquaculture genetics., 2004, 238(1): 1-37.
[13] Kim B, Hwang I S, Lee H J, Lee J M, Seo E, Choi D, Oh C S. Identification of a molecular marker tightly linked to bacterial wilt resistance in tomato by genome-wide SNP analysis., 2018, 131(5): 1017-1030.
[14] DUNEMANN F, PEIL A, URBANIETZ A, GARCIA-LIBREROS T. Mapping of the apple powdery mildew resistance geneand its genetic association with an NBS-LRR candidate resistance gene., 2007, 126(5): 476-481.
[15] Erdin N, Tartarini S, Broggini G A, Gennari F, Sansavini S, Gessler C, Patocchi A. Mapping of the apple scab-resistance gene., 2006, 49(10): 1238-1245.
[16] 劉升銳.柑橘高密度遺傳連鎖圖譜的構(gòu)建及落葉性狀的QTL定位[D]. 武漢: 華中農(nóng)業(yè)大學(xué), 2016.
LIU S R. High-density genetic map construction and identification of QTLs controlling deciduous trait in citrus[D]. Wuhan: Huazhong Agricultural University, 2016. (in Chinese)
[17] Barba P, Cadle‐Davidson L, Harriman J, Glaubitz J C, Brooks S, Hyma K, Reisch B. Grapevine powdery mildew resistance and susceptibility loci identified on a high-resolution SNP map., 2014, 127(1): 73-84.
[18] Oliveira R P D, Cristofani M, Machado M A. Genetic mapping for citrus variegated chlorosis resistance., 2002, 23(1): 247-261.
[19] Bastianel M, Cristofani-Yaly M, Oliveira A C, Freitas-Astúa J, Garcia A A F, Resende M D V, Rodrigues V, Machado M A. Quantitative trait loci analysis of citrus leprosis resistance in an interspecific backcross family of (Blanco×L. Osbeck) ×L. Osb., 2009, 169(1): 101-111.
[20] PENG A H, XU L Z, HE Y R, LEI T G, YAO L X, CHEN S C, ZOU X P. Efficient production of marker-free transgenic ‘Tarocco’ blood orange (Osbeck) with enhanced resistance to citrus canker using a Cre/site-recombination system., 2015, 123(1): 1-13.
[21] Artimo P, Jonnalagedda M, Arnold K, Baratin D, Csardi G, DE Castro E, Duvaud S, Flegel V, Fortier A, Gasteiger E, Grosdidier A, Hernandez C, Ioannidis V, Kuznetsov D, Liechti R, Moretti S, Mostaguir K, Redaschi N, Rossier G, Xenarios I, Stockinger H. ExPASy: SIB bioinformatics resource portal., 2012, 40(W1): W597-W603.
[22] 吳柳, 白曉晶, 文慶利, 謝竹, 何永睿, 王麗娟, 陳善春, 鄒修平. 柑橘黃龍病病原菌Las在葉圓片嫁接接種的‘錦橙’中早期擴散研究. 園藝學(xué)報, 2018, 45(11): 2121-2128.
WU L, BAI X J, WEN Q L, XIE Z, HE Y R, WANG L J, CHEN S C, ZOU X P. Early spread characteristics ofLiberibacter asiaticus in Jincheng orange (Osbeck) by leafdisc grafting., 2018, 45(11): 2121-2128. (in Chinese)
[23] Peng A H, Chen S C, Lei T G, XU L Z, HE Y R, WU L, YAO L X, ZOU X P. Engineering canker‐resistant plants through‐targeted editing of the susceptibility genepromoter in citrus., 2017, 15(12): 1509-1519.
[24] Morgutti S, Negrini N, Nocito F F, Ghiani A, Bassi D, Cocucc M. Changes in endopolygalacturonase levels and characterization of a putative endo-PG gene during fruit softening in peach genotypes with nonmelting and melting flesh fruit phenotypes., 2006, 171(2): 315-328.
[25] Devitt L C, Fanning K, Dietzgen R G, HOLTON T A. Isolation and functional characterization of a lycopene-cyclase gene that controls fruit colour of papaya (L.)., 2010, 61(1): 33-39.
[26] Sánchez-Pérez R, Howad W, Garcia-Mas J, Arús P, Martínez-Gómez P, Dicenta F. Molecular markers for kernel bitterness in almond., 2010, 6(2): 237-245.
[27] Delormel T Y, Boudsocq M. Properties and functions of calcium‐dependent protein kinases and their relatives in., 2019, 224(2): 585-604.
[28] Harmon A C, Putnam-Evans c, Cormier m j. A calcium-dependent but calmodulin-independent protein kinase from soybean., 1987, 83(4): 830-837.
[29] 王金磊. 弓形蟲鈣依賴性蛋白激酶的功能及免疫保護性研究[D].北京: 中國農(nóng)業(yè)科學(xué)院, 2017.
WANG J L. Studies of the basic functions and immunoprotective effect ofcalcium-dependent protein kinases[D]. Beijing:Chinese Academy of Agricultural Sciences, 2017. (in Chinese)
[30] Xu W W, Huang W C. Calcium-dependent protein kinases in phytohormones signaling pathways., 2017, 18(11): E2436.
[31] Urao T, Katagiri T, Mizoguchi T, Yamaguchi-Shinozaki K, Hayashida N, Shinozaki K. Two genes that encode Ca2+-dependent protein kinases are induced by drought and high-salt stresses in., 1994, 244(4): 331-340.
[32] Wang B F, Zhang Y X, Bi Z Z, Liu Q E, Xu T T, Yu N, Cao Y R, Zhu A K, Wu W X, Zhan X D, Anis G B, Yu P, Chen D B, Cheng S H, Cao L Y. Impaired function of the calcium-dependent protein kinase,, leads to early senescence in rice (L.)., 2019, 10: Article 52.
[33] Zhao R, Sun H L, Mei C, Wang X J, Yan L, Liu R, Zhang X F, WANG X F, ZHANG D P. TheCa2+-dependent protein kinase CPK12 negatively regulates abscisic acid signaling in seed germination and post-germination growth., 2011, 192(1): 61-73.
[34] Zhao R, Wang X F, Zhang D P. CPK12: A Ca2+-dependent protein kinase balancer in abscisic acid signaling., 2011, 6(11): 1687-1690.
[35] Botella J R, Arteca J M, Somodevilla M, Arteca R N. Calcium-dependent kinase gene expression in response to physiol and chemical stimuli in mungbean ()., 1996, 30(6): 1129-1137.
[36] Breviario D, Morello L, Gianì S. Molecular cloning of two novel rice cDNA sequences encoding putative calcium-dependent protein kinase., 1995, 27(5): 953-967.
[37] Romeis T, Piedras P, Jones J D. Resistance gene-dependent activation of a calcium-dependent protein kinase in the plant defence response., 2000, 12(5): 803-816.
[38] Campos-Soriano L, Gómez-Ariza j, Bonfante P, SAN Segundo B. A rice calcium-dependent protein kinase is expressed in cortical root cells during the presymbiotic phase of the arbuscular mycorrhizal symbiosis., 2011, 11: 90.
[39] Weaver C D, Roberts D M. Determination of the site of phosphorylation of nodulin 26 by the calcium-dependent protein kinase from soybean nodules., 1992, 31(37): 8954-8959.
Verification of SNPs Associated with Citrus bacterial Canker Resistance and Induced Expression of SNP-related Calcium-Dependent Protein Kinase Gene
Peng Yun, Lei TianGang, Zou XiuPing, Zhang JingYun, Zhang QingWen, Yao JiaHuan, He YongRui, Li Qiang, Chen ShanChun
(National Center for Citrus Variety Improvement, Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Chongqing 400712)
【】In the previous study, single nucleotide polymorphisms (SNPs) of citrus varieties were screened based on transcriptome, and 14 SNPs were defined to be associated with citrus bacterial canker (CBC) resistance via association analysis. In this study, it is aimed to verify the correlation between these SNP loci and CBC resistance in order to obtain significantly related SNPs and to find the inducible expression profiles of corresponding genes by plant hormones andsubsp.() infection.【】The sensitive and resistant varieties and their F1populations were used for CBC resistance identification viaacupuncture inoculation and SNP-based genotyping was conducted via high resolution melting (HRM) technology. The phenotypes and genotypes were then associated by software DPS, and inducible expression profiles of SNP (HP031) related calcium-dependent protein kinase gene () were analyzed by quantitative real-time PCR (qRT-PCR).【】The lesion areas of F1populations ranged from 0.75 to 3.29 mm2, and the disease index ranged from 30.2 to 100, while the resistant variety Jindan had a disease index of 11.1, and disease index of the susceptible variety Bingtangcheng was 100. For the offspring of hybrids with a low disease index, at least one of their parents is a disease-tolerant variety, and most of the female parents have strong disease-tolerance. according to the disease index, the populations could be grouped into immune (1 variety), highly resistant (17), moderately resistant (31), moderately sensitive (38), and highly sensitive (56).The SNP typing results showed that all the 14 SNP loci were polymorphic among 143 test materials, which could be divided into 3 different genotypes, 2 homozygous types and 1 heterozygous type. The results of simple correlation analysis showed that the genotypes of multiple SNP loci were significantly correlated with the lesion area and disease index. The results of canonical correlation analysis showed that the correlation between the 5 SNP loci and the lesion area was high, the absolute values of the correlation coefficients were all >0.2, and their numbers were HP31, HP42, HP85, HP87, and HP170. The genotypes of these 5 SNP loci could be used to predict the tolerance to CBC. SNP HP31 located in the coding region of(CAP ID: Cs4g10370). The expression ofwas analyzed at 6, 12, 24, 48 and 72 hpi (hours post inoculation), it was found that the expression ofall increased first and then decreased, and reached the highest relative expression at 48 hpi in Jindan (highly resistant), Xinshengxi No. 3 (moderately resistant), andBingtangcheng (highly sensitive) varieties. At 12 hpi, the relative expression level ofin Jindan was 3 times of that in the control, but there was no significant difference in Xinshengxi No. 3 and Bingtangcheng. Besides,was also differently induced by salicylic acid (SA), methyl jasmonate (MeJA), and abscisic acid (ABA) in CBC resistant and sensitive varieties. 【】Five SNPs associated with CBC resistance were verified, which can be used for marker-assistant selection. SNP HP31 related genecan be induced byand phytohormones, which may play an important role in the signal transduction process of citrus response to.
citrus bacterial canker (CBC);subsp.(); single nucleotide polymorphism (SNP); calcium-dependent protein kinase gene (); induced expression

10.3864/j.issn.0578-1752.2020.09.010
2019-12-09;
2020-01-28
國家重點研發(fā)計劃(2018YFD0201500,2018YFD1000300)、中央高校基本科研業(yè)務(wù)費(SWU115025,XDJK2018C034)、廣西科技重大專項(桂科AA18118046-6)、國家現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系建設(shè)專項(CARS-26)
彭蘊,E-mail:pengyun1995@icloud.com。通信作者雷天剛,E-mail:156280591@qq.com。通信作者陳善春,E-mail:scchen@cric.cn
(責(zé)任編輯 岳梅)