999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

在數學單元起始課中實現“思維的教學”

2020-04-07 17:53:56王華
江蘇教育·中學教學版 2020年2期
關鍵詞:思維品質初中數學

【摘要】數學單元起始課要實現思維的教學,需正確把握三個關系,即動手與動腦之間的關系,即時思考與長時間思考之間的關系、各種思維品質之間的關系,從而改進學生的思維方式,讓學生逐步學會更清晰、深入、全面、合理地思考問題。

【關鍵詞】動手與動腦;思維品質;初中數學

【中圖分類號】G633.6【文獻標志碼】A【文章編號】1005-6009(2020)11-0048-05

【作者簡介】王華,江蘇省鎮江市丹徒區石馬中學(江蘇鎮江,212113)副校長,高級教師,江蘇省“333高層次人才培育工程”培養對象,鎮江市學科帶頭人。

數學單元起始課,即數學單元開篇的第一節課,是整個單元學習的起點。起始課作為一個單元留給學生的“第一印象”,承擔著激發學生的學習熱情、培養學生學習興趣的責任。在教學過程中,教師常常根據單元特點創設問題情境,通過設置合適的數學活動,如數學實驗等,讓學生經歷觀察、操作、計算、推理等過程,對本章將要學習的內容結構有一個大致的了解。

但由于一節課需讓學生領略整個單元的內容結構(如概念、性質及應用)及貫穿始終的思想方法,課堂容量較大。現實中經常看到這樣的現象:學生一直在做,一直在算,一直在動手,但就是不想!然而“數學歸根到底是自己思考的產物”(陳省身語),因而單元起始課的教學必須將學生的動手與動腦結合起來,將思維的學習與具體數學知識內容的學習結合起來,幫助學生學會思維,并逐步學會想得更清晰、更深入、更全面、更合理。

“中心對稱圖形”是蘇科版八年級下冊第九章學習內容,具體包括:(員)圖形的旋轉的概念和性質;(圓)研究圖形的旋轉的“特例”,即中心對稱、中心對稱圖形;(猿)旋轉知識在數學內部的應用,即用旋轉、中心對稱的概念和性質研究一些特殊平面圖形的性質,解決數學問題;(源)將旋轉知識應用于認識和解決現實問題。可見,圖形旋轉的概念和性質是本單元的基礎,最為重要。

本節課是“中心對稱圖形”單元起始課,要求學生經歷在一系列數學活動中發現問題、提出問題、分析問題、解決問題的過程,從中抽象出圖形旋轉的概念,并探尋幾何圖形性質研究的一般方法,為進一步探究旋轉的特例及相關圖形的性質提供策略,構建中心對稱圖形這一章的研究思路。因此,筆者注意從學生的數學現實及思維特點出發,通過設計數學實驗,豐富思維活動,正確把握動手與動腦之間的關系,即時思考與長時間思考之間的關系、各種思維品質之間的關系,從而嘗試改進學生的思維方式。

一、把握動手與動腦之間的關系

對于這里所說的“動手”,我們應作廣義的理解:這不僅是指具體的實物操作,如旋轉三角尺等,也包括各種數學運作,如讓學生對研究對象進行度量,乃至各種各樣的計算。南京大學教授鄭毓信認為,教師在教學中往往特別重視學生“動手”,卻忽視了如何能夠促使他們更為積極地去“動腦”,忽視了幫助學生逐步學會想得更深、更合理、更清晰。咱1暫在“動手”之前教師需圍繞:“為什么要動手”“事實上在做什么”“動手究竟產生了怎樣的效果”三個問題讓學生“動腦”,從而調動學生各種感官參與數學活動,根據提供的現實材料,經歷動手操作、觀察現象、提出猜想、驗證結論等環節,體驗“知識從何而來”“知識是什么”“知識向何而去”的完整數學學習過程。

本課作為“中心對稱圖形”的單元起始課,內容龐雜,其中圖形旋轉的概念最為基礎與核心。我們知道,概念教學的核心就是讓學生經歷概念本質特征的概括過程,讓學生根據具體事例,經歷觀察、操作、思考等過程,從中抽象出概念的本質特征。而圖形旋轉的本質特征是旋轉中心、旋轉角度、旋轉方向“三要素”,因此本節課為探究旋轉“三要素”定向設計了數學實驗:讓學生任意畫一個吟ABC,并制作一個與之全等的三角形硬紙片,(1)將三角形紙片繞點A旋轉 30毅,得到的結果怎樣?(2)讓它分別繞點A和點B逆時針旋轉30毅,得到的結果一樣嗎?(3)讓它繞點A逆時針旋轉,得到的圖形有多少個?(4)給定怎樣的條件才能使旋轉后的圖形唯一確定?顯然,經歷上述4步的動手動腦比“看圖歸納共同特征”更能凸顯并提煉旋轉的本質特征。

學生通過操作(1)明白了旋轉方向不確定,可得出兩個不同位置的圖形;操作(2)明白了旋轉中心不確定,可得出兩個不同位置的圖形;操作(3)明白了旋轉角度不確定,可得出無數個不同位置的圖形,進而引發對“如何唯一確定旋轉后圖形”的必然追問和思考,達到了“導而弗牽,強而弗抑,開而弗達”的境界。這樣的手腦結合,使學生經歷探究、反思、感悟、發現的過程,而旋轉的概念慢慢“長”出,從而讓學生回到“知識發生的現場”。

當然,上述4步驟的設計還有如下的考量,即讓學生不僅僅明白“為什么要動手”,還要知道怎樣設計操作流程才能達到效果。顯然,根據圖形旋轉的概念,其旋轉后圖形的確定需要三個變量的同時確定,因此為了感受旋轉“三要素”,在實驗設計時,可采用控制變量法,將其中的兩個變量加以確定,進而感受圖形受第三個變量變化的影響,從而抽象出概念的本質特征。學生獲得了這樣的認知,做到“知其然,更知其所以然”,思維便能得到發展。

二、把握即時思考與長時間思考之間的關系

日本數學家、菲爾茨獎獲得者廣中平佑在《創造之門》一書中曾明確指出:思考問題的態度有兩種。從專業角度看,一種是花費較短時間的即時思考型,一種是較長時間的長期思考型。所謂的思考能人,大概就是指能夠根據思考的對象自由自在地分別使用這兩種類型的思考態度的人。

鄭毓信教授以康納曼的工作作為直接背景,賦予了即時思考與長時間思考一些新的含義:

起始課強調激發學生的學習興趣,培養學生參與學習的積極性與主動性,課堂往往呈現出熱鬧的氛圍,學生一般采取即時思考的方式解決問題。但課堂不能只追求熱鬧的場面,必須處理好學生獨立思考與合作學習、積極交流之間的關系,畢竟“數學是自己思考的產物”。綜上可見,起始課也應努力追求另一種課堂境界,即營造安靜的課堂、思維的課堂、開放的課堂,培養學生長時間思考的習慣與能力。

例如,教材在得出圖形旋轉的概念后,立即設置了探究性質的活動。如圖1,吟ABC繞點O旋轉到吟ABC的過程中,它的形狀、大小沒有改變,圖1中還有哪些相等的線段、相等的角?根據這樣的問題,學生能夠快速地得出教師需要的答案,引出旋轉的性質。但我們不能忽視這樣一個重要的問題,就上述內容的教學而言為什么要突出“形狀、大小是否改變”“有哪些相等的線段、相等的角”這樣的信息?或者說,這樣的信息究竟從哪里來?是怎么想到要從這些角度研究性質的?如果這些問題解決了,學生就不僅能探究出這幾個性質,而且還會思考“還有哪些性質?”更重要的是能從中得到“如何研究性質”的鍛煉。那么如何才能讓學生不僅做得到,而且想得到呢?

筆者以為,與教材設置的問題相比,以下的問題引領更為恰當:(1)你認為研究旋轉的性質是要研究什么?(2)具體而言是要研究什么呢?對應元素之間有什么關系?(3)對應元素有哪些?它們在形狀、大小和位置方面有什么不變性?(4)觀察旋轉前后的兩個圖形,你能立即得到它們有哪些不變性?對應點的不變性怎么體現?這些問題是讓學生知道,旋轉的性質就是研究旋轉前后兩個圖形的關系,圖形變化中的那些不變性,具體而言就是旋轉前后兩個圖形對應元素在形狀、大小和位置關系方面的不變性。通過上述問題的設置與解決,讓學生養成有序思考的習慣,賦予學生“想得到”的能力。

當然,這里還存在一個問題,即一旦引入某個概念,如圖形的旋轉,我們往往就會急于讓學生通過動手操作去發現它們的性質,卻沒有認識到其中的很大一部分特性是相關概念的直接推論。本節課關于圖形旋轉前后對應點的不變性是教學的重難點,學生很難發現并表述清楚,教師要適時引導學生“從概念出發”思考性質,也就是要有利用“三要素”研究性質的意識。綜上,學生不僅獲得了圖形的旋轉的性質,更重要的是有了進一步探究旋轉的特例及相關圖形性質的策略與能力,在具體數學內容的學習中訓練學生長時間思考的能力,促進其思維的發展。

三、把握各種思維品質之間的關系

相對于對具體數學思想方法的學習,通過單元起始課實現思維的教學應當更加重視學生思維品質的提升,包括思維的嚴密性(合理性)與深刻性,思維的整體性與結構性,以及思維的自主性與創新性。在起始課教學中,各個思維品質的提升不是互相孤立存在,它們之間密切相關,這一系列思維品質被看成理性思維最為重要的內涵。從數學教育的更大背景來說,我們應當努力追求的一個更高目標是不僅應幫助學生逐步學會理性地思維,也應促成他們由理性思維逐步走向理性精神,從而真正成為一個高度自覺的理性人。咱圓暫

1.提升學生思維的嚴密性和深刻性。

思維的嚴密性和深刻性是理性思維的重要因子。正如美國數學家R·柯朗和H·羅賓所說:數學,作為人類思維的表達形式,反映了人們積極進取的意志、縝密周詳的推理及對完美境界的追求。邏輯的嚴密性是數學學科的重要特點,數學學習需關注學生的思維嚴密性(合理性),但又不能只停留在“是什么”的階段,還需明白“為什么”。對“為什么”的追問可以看成是提升學生思維深刻性的一個重要方面。

例如,教師引導學生“從概念出發”探究旋轉前后圖形對應點的不變性時,先研究一組對應點的性質(即對應點到旋轉中心的距離相等,對應點與旋轉中心連線所成的角是旋轉角),再到兩組對應點的性質(即兩組對應點分別與旋轉中心連線所成的角相等)。像這樣的有序思考不僅是邏輯嚴密的表現,從另一個角度來看,也能幫助學生提升思維的深刻性。另外,圍繞“圖形的旋轉”概念與性質探索的“長時間思考”,對為什么研究旋轉的性質就是要研究“形狀、大小是否發生改變?”“有哪些相等的線段、相等的角?”對這類問題地不斷追問,既能促使學生的思考合乎理性,也能將學生的思維引向深刻。

2.重視學生思維的整體性與結構性。

數學是整體的,其主要表現為數學知識內容的系統性和結構化。任何數學內容都來自某一系統,從屬于某一結構。從結構的角度來把握所學習的數學內容,不僅能凸顯內容的實質,建立內容之間的聯系,而且有利于學生形成“從結構的角度把握事物本質”的結構化思維。咱3暫

如圖2是“中心對稱”這一單元的內容結構,有了前面圖形的旋轉概念和性質的研究經驗,即研究性質需從概念出發,進而研究構成圖形的元素及相關元素之間的關系,學生便能將圖形旋轉寅特例(性質)寅應用(平行四邊形等、實際問題)等內容的研究方法一線串通,主動探究幾何圖形的性質,從而促進思維的遷移,獲得研究方法的結構化。

另外,本單元內容的設置整體上遵循了從一般到特殊的編寫體例,如從圖形的旋轉到成中心對稱,從中心對稱圖形到平行四邊形,從平行四邊形到特殊的平行四邊形。其中,每一個特例的概念與性質都是建立在前一個上位概念與性質的基礎之上。起始課不需要面面俱到,但對于這樣的邏輯關系一定要給學生闡述清楚,讓學生“見樹木又見森林”。這樣學生就會獲得一般的研究方法,如研究成中心對稱的兩個圖形的性質,就能想到圖形旋轉的性質,發現其具備圖形旋轉的一切性質,并“從概念出發”思考其“特別之處”。其余特例的研究亦是如此。教師可以根據起始課的特點,引導學生用不同的方式來表達數學的整體結構(如圖2),發展學生的整體性思維、結構化思維、系統性思維,讓學生獲得學習數學的重要“法寶”,起到事半功倍的效果。

3.實現學生思維的自主性與創新性。

數學是人類文化的有機組成部分,它和其他文化一樣,彰顯著人的主體精神與創造性,散發著自身迷人的學科氣息。因而,數學課堂上應特別關注學生的主體參與,在探究、反思、感悟、發現中去粗取精、去偽存真、由表及里、化繁為簡,讓知識慢慢“長”出來,讓學習真正發生。而思維的創新不應簡單地被等同于與眾不同,其主要表現為對已有工作的不斷優化,包括不同意見的適當整合。

本課在探究圖形旋轉的性質之前設置了這樣一個活動,利用準備好的透明紙、白紙、硬紙板、三角尺、大頭針等,創造一個三角形旋轉的情境。學生經過自主探究,會先形成三種設計方案———

第一種方案是在白紙上描出一個三角尺的形狀,即吟ABC,按著頂點A,將三角尺旋轉一個角度,描出旋轉后三角尺的形狀,得到旋轉前后的圖形。

第二種方案是學生剪出一個三角形紙片,在白紙上描出該紙片的形狀,在三角形內任取一點,用大頭針固定,將三角形紙片旋轉一定的角度,描出旋轉后三角尺的形狀,得到旋轉前后的圖形。

顯然第二種方案比第一種方案更具有一般性,此時,學生觀察到旋轉中心從形上來到了形內,于是大膽想象、操作,創造了第三種方案:取一張硬紙片,在上面挖出一個三角形的洞,任意選硬紙片上一點為旋轉中心,用大頭針將其固定在白紙上,先描出三角形,然后繞著旋轉中心轉動硬紙片,再次描圖,得到旋轉前后的圖形。這樣得到的旋轉圖形,其旋轉中心更具有普遍性,利于性質的進一步探究,而在整個設計過程中,學生從最初的方案開始自主設計、優化整合,表現出來的創新意識彌足珍貴。

總的來說,正如鄭毓信教授所強調的:數學思維顯然并非是思維的唯一可能形式,各種不同的思維形式,如文學思維、藝術思維、哲學思維、科學思維等,又都有其一定的合理性和局限性。從而,我們就不應唯一地去強調“幫助學生學會數學地思維”,“應當跳出數學,并從更為一般的角度去認識各種數學思想與數學方法的普遍意義”,“用思維方法的分析去帶動具體知識內容的教學”。咱4暫尤其是單元起始課的教學,要讓學生動手、動腦,在具體知識內容中感受整體,在結構中實現建構,在思維中學會思考。

【參考文獻】

[1]鄭毓信.數學教學與學會思維———“教數學、想數學、學數學”系列之四[J].小學數學教師,2015(6):4-11.

[2]鄭毓信.數學應讓學生學會思維(上)——數學核心素養的理論性思考與實踐性解讀[J].湖南教育,2017(1):22-26.

[3]許衛兵.以思維為核心的數學素養導向———基于課堂教學的視角[J].小學數學,2017(1):12-15.

[4]鄭毓信.“數學與思維”之深思[J].數學教育學報,2015(1):1-5.

(本文系第31屆江蘇省“教海探航”征文競賽獲獎論文,有刪改。)

猜你喜歡
思維品質初中數學
英語教學中思維品質培養初探
媒介運營管理者應具備的一種新的思維品質
商(2016年33期)2016-11-24 23:20:00
提升學生對數學的喜愛度
在“教學做合一”中優化思維品質 提升創新能力
試分析初中數學二元一次方程和一次函數的教學
考試周刊(2016年77期)2016-10-09 11:07:28
初中數學教學中如何培養學生的思維能力
考試周刊(2016年77期)2016-10-09 11:06:46
例談數學教學中的“頓悟”
考試周刊(2016年77期)2016-10-09 11:00:03
初中數學高效課堂的創建策略
考試周刊(2016年76期)2016-10-09 08:59:50
學案式教學模式在初中數學教學中的應用
考試周刊(2016年76期)2016-10-09 08:57:00
培養團精神,開展合作學習
考試周刊(2016年76期)2016-10-09 08:55:36
主站蜘蛛池模板: 国产精品自拍露脸视频| 婷婷色狠狠干| 欧美成人综合在线| 任我操在线视频| 伊人五月丁香综合AⅤ| 久久综合亚洲鲁鲁九月天| 在线观看国产精品第一区免费 | 97视频免费在线观看| 无码日韩视频| 毛片一级在线| 国产一级视频久久| 国产成人无码Av在线播放无广告| 国产精品青青| 99热线精品大全在线观看| 高清无码不卡视频| 亚洲色图欧美在线| 国产亚卅精品无码| 视频一本大道香蕉久在线播放 | 女人18一级毛片免费观看| 亚洲美女久久| 亚洲日本中文字幕乱码中文 | 久久91精品牛牛| 亚洲国产成人综合精品2020| 久久综合五月| 无码一区中文字幕| 国产成人精品无码一区二| 一级毛片基地| 日韩欧美高清视频| 亚洲成网站| 高清国产在线| 欧美色丁香| 中文字幕日韩丝袜一区| 国产精品亚欧美一区二区| 国产在线观看99| 亚洲成a∧人片在线观看无码| 欧美第二区| 四虎影院国产| 国产在线98福利播放视频免费| 丝袜亚洲综合| 欧美视频二区| 亚洲无码熟妇人妻AV在线| 人人91人人澡人人妻人人爽| 欧美三級片黃色三級片黃色1| 精品国产免费观看一区| 久久香蕉国产线看观看精品蕉| 欧美国产日产一区二区| 毛片网站观看| 日本人又色又爽的视频| 亚洲欧美成人影院| 亚洲欧美日韩精品专区| 在线日韩日本国产亚洲| 91区国产福利在线观看午夜 | 91口爆吞精国产对白第三集| 真实国产乱子伦视频| 欧美高清国产| 国产一区二区福利| 免费观看无遮挡www的小视频| 在线精品欧美日韩| 激情国产精品一区| 日韩小视频在线播放| 啦啦啦网站在线观看a毛片| 中文字幕无码中文字幕有码在线| 欧美色图久久| 亚洲乱强伦| 国产欧美日韩另类| 国产激情影院| 亚洲午夜片| 精品少妇三级亚洲| 国产精品欧美日本韩免费一区二区三区不卡 | 中文字幕第4页| 综合色亚洲| 国产精品成人观看视频国产| 日本午夜精品一本在线观看| 最新亚洲av女人的天堂| 亚洲日本www| 欧美日韩另类国产| 国产av一码二码三码无码| vvvv98国产成人综合青青| 国产人妖视频一区在线观看| 国产成人亚洲无吗淙合青草| 亚洲高清资源| 高清久久精品亚洲日韩Av|