999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

基于LSTM模型的心律失常識別的研究

2020-01-03 10:09:02余天效
現(xiàn)代信息科技 2020年14期
關(guān)鍵詞:心律失常深度學(xué)習(xí)

摘? 要:動態(tài)心電圖,即使用動態(tài)心電圖儀監(jiān)控患者日常生活的24小時或者更長的時間中的心率活動情況所得到的波形圖。動態(tài)心電圖在臨床上已由單導(dǎo)、雙導(dǎo)發(fā)展為十二導(dǎo)聯(lián)全記錄。為了準(zhǔn)確預(yù)測不同心電圖的心電信息,研究并提出了一種利用改進(jìn)深度學(xué)習(xí)網(wǎng)絡(luò),對十二導(dǎo)聯(lián)心電信號進(jìn)行心律失常的自動診斷,考慮到心電信號前后的相關(guān)性,提出利用LSTM網(wǎng)絡(luò)結(jié)合CNN深度學(xué)習(xí)框架,并融合批歸一化提高模型計算效率和準(zhǔn)確性,最終達(dá)到很好的效果。

關(guān)鍵詞:心電圖;心律失常;長短期記憶;深度學(xué)習(xí)

Abstract:Dynamic electrocardiogram (Holter),that is,the waveform chart obtained by monitoring the heart rate activity of patients in 24 hours or more in their daily life by using dynamic electrocardiograph. Dynamic electrocardiogram (Holter) has been developed from single lead and double lead to 12-lead full recording. In order to accurately predict the ECG information of different electrocardiograms,an improved deep learning network is proposed to automatically diagnose arrhythmia of 12-lead ECG signals. Considering the correlation between ECG signals,LSTM network combined with CNN deep learning framework is proposed,and batch normalization is integrated to improve the calculation efficiency and accuracy of the model,and finally achieve good results.

Keywords:electrocardiogram;arrhythmia;long-term and short-term memory;deep learning

0? 引? 言

心臟內(nèi)部的活動會產(chǎn)生的一系列活動在體表會形成不同的電位差,這些電位差被稱為電信號。心電圖儀則是通過將正負(fù)兩電極置于人體的任何兩點(diǎn),再與心電圖儀連接,描記出此人的心電圖(ECG)。

目前國際上通用的動態(tài)十二導(dǎo)聯(lián)心電圖是對傳統(tǒng)的心電圖進(jìn)行改進(jìn)的方法,通過將電極分別置于人體的十二個部位來獲得人體心率活動的情況,描述十二個部位的代號分別為:Ⅰ、Ⅱ、Ⅲ、avR、avL、avF、V1、V2、V3、V4、V5、V6。

醫(yī)學(xué)上,心電圖的作用在于醫(yī)生可以通過它來判斷患者的心臟是否存在病灶。與大多數(shù)時間序列類似,手動分析ECG信號的主要問題在于:從業(yè)人員難以檢測和分類信號中不同的波形和形態(tài),在診斷過程中既耗時又可能產(chǎn)生差錯[1]。

因此,研究人員想到了利用計算機(jī)來對心電圖進(jìn)行分析、預(yù)測,由此判斷患者心臟是否存在病灶。

在以往文獻(xiàn)中多數(shù)研究者采用了機(jī)器學(xué)習(xí)的方法對心電圖進(jìn)行分析[2,3],常規(guī)的方法包括支持向量機(jī)[4]、決策樹[5]和CNN[6]、LSTM[7]等,同時他們在分析前,采用了小波變換[8]、圖形識別[9]、模板匹配[10]、能量閾值[11]等方法,但這些方法依舊存在缺陷,尚不成熟。

基于北京郵電大學(xué)信息網(wǎng)絡(luò)中心進(jìn)行的深度學(xué)習(xí)實驗課題,本文提出了一種基于十二導(dǎo)聯(lián)心電圖的心率失常快速分類方法,筆者為了實現(xiàn)更快捷準(zhǔn)確的進(jìn)行心率判斷,根據(jù)心電圖自身的前后依賴特性,以及考慮到數(shù)據(jù)量大小以及神經(jīng)網(wǎng)絡(luò)的深度,在容易出現(xiàn)過擬合和梯度消失的問題上,將卷積神經(jīng)網(wǎng)絡(luò)和循環(huán)神經(jīng)網(wǎng)絡(luò)結(jié)合,并引入批歸一化(Batch Normalization,BN)算法,用于解決以上問題。分類器是基于循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)以及卷積神經(jīng)網(wǎng)絡(luò)(CNN)所設(shè)計。將十二導(dǎo)聯(lián)心電圖的數(shù)據(jù)作為分類器的輸入,將數(shù)據(jù)通過LSTM與池化處理,并在原有的基礎(chǔ)上增加了批歸一化層,以診斷結(jié)果為輸出,加快模型擬合速度并且提高了模型準(zhǔn)確率,使準(zhǔn)確率達(dá)到99.55%。

1? 方法

1.1? 數(shù)據(jù)預(yù)處理

在信號采集的過程中,由于外界等各種原因,采集到的信號會伴隨有噪音,這些噪音的存在會對最后實驗的結(jié)果準(zhǔn)確性造成影響,因此為了提高ECG信號的信噪比,進(jìn)而提高實驗的準(zhǔn)確性,在數(shù)據(jù)輸入神經(jīng)網(wǎng)絡(luò)之前,應(yīng)先對其進(jìn)行降噪處理,本文采用小波降噪的方法。如圖1所示,小波降噪后的信號保留了原有信號中的有用數(shù)據(jù),在一定程度上消除了部分噪音。

1.2? 長短期記憶人工神經(jīng)網(wǎng)絡(luò)

長短期記憶人工神經(jīng)網(wǎng)絡(luò)(LSTM)是循環(huán)神經(jīng)網(wǎng)絡(luò)的變體,是為了解決RNN中存在的長期依賴而設(shè)計出的人工神經(jīng)網(wǎng)絡(luò)。與經(jīng)典RNN有所不同的是,LSTM突破性的引入了門機(jī)制和記憶單元,為由于梯度消失和梯度爆炸問題導(dǎo)致的常規(guī)RNN網(wǎng)絡(luò)在長期依賴問題中的困境提供了解決方法。

LSTM由遺忘門(forget gates)、輸入門(input gates)和輸出門(output gates)三種門結(jié)構(gòu)保存歷史信息,相關(guān)公式為:

其中,ft是遺忘門t時刻的狀態(tài)值,it是輸入門t時刻的狀態(tài)值,W和b分別為對應(yīng)的權(quán)值和偏置,σ為參數(shù),xt是t時刻輸入的數(shù)據(jù),Ct是t時刻記憶單元的值, 表示輸入門t時刻記憶單元的候選信息,ot是輸出門t時刻的狀態(tài)值,ht是t時刻LSTM的輸出狀態(tài)值,其中記憶單元的狀態(tài)值是由輸入門和遺忘門共同調(diào)節(jié)。

1.3? 最大池化

池化(Pooling)是卷積神經(jīng)網(wǎng)絡(luò)中一個重要的部分,用于提取大量高緯度輸入數(shù)據(jù)的關(guān)鍵部分,來縮小模型大小,提高計算速度,同時提高被提取特征的魯棒性。其中最大池化(Max Pooling)為最常見的一種池化操作,將輸入數(shù)據(jù)根據(jù)設(shè)定的卷積核劃分為等大的幾個區(qū)域,輸出每個區(qū)域的最大值,并將這些最大值重新組合成為一個新的數(shù)據(jù),池化層(Pooling Layer)可以不斷減小數(shù)據(jù)大小,在深度學(xué)習(xí)中有效控制數(shù)據(jù)量和計算量,從而防止模型過擬合,如圖2所示,為一次簡單的最大池化操作示例,其中使用的為2×2卷積核,每一不同顏色的區(qū)域為每次不同的卷積操作區(qū)域。

1.4? 批歸一化

批歸一化是谷歌公司在2015年提出的一個深度神經(jīng)網(wǎng)絡(luò)訓(xùn)練的技巧,把數(shù)據(jù)分成小批進(jìn)行隨機(jī)梯度下降,并且在每一批數(shù)據(jù)前向傳遞時,對其進(jìn)行歸一化處理[13]。該算法不僅加快了深度神經(jīng)網(wǎng)絡(luò)模型收斂的速度,而且在一定程度上緩解了神經(jīng)網(wǎng)絡(luò)中數(shù)據(jù)分布分散的問題,使得模型更加穩(wěn)定,提高網(wǎng)絡(luò)泛化能力。該算法還可以作為神經(jīng)網(wǎng)絡(luò)中的一層放在激活函數(shù)之前,流程主要為:對每一批次的訓(xùn)練數(shù)據(jù)計算獲得其均值和方差,并歸一化,最后對處理過的數(shù)據(jù)進(jìn)行尺度變換和偏移,使其適應(yīng)神經(jīng)網(wǎng)絡(luò)。

2? 模型構(gòu)建

本文使用的是LSTM網(wǎng)絡(luò)和CNN結(jié)合并引入BN算法的方式,將十二導(dǎo)聯(lián)心電圖輸入數(shù)據(jù),看作多通道一維數(shù)據(jù),因此本文使用的是一維卷積層和一維池化層提取心電信號。

構(gòu)建模型如圖3所示,輸入層的輸入維度為5 000× 12,由卷積層捕捉數(shù)據(jù)的大量局部關(guān)聯(lián)信息,并且使用批歸一化提高計算速度并提高模型魯棒性;由長短期記憶層提取時序特征,并將這兩個特征融合到全連接層,最后通過Softmax層的激活函數(shù)進(jìn)行輸出,加入批歸一層提高計算效率,并降低過擬合可能性。

3? 實驗結(jié)果與分析

3.1? 實驗平臺及評價指標(biāo)

實驗平臺的硬件配置為2.4 GHz Intel Core i5,圖形卡為Intel Iris Plus Graphics 655(顯存1 536 MB),內(nèi)存32 GB,操作系統(tǒng)為MacOS 10.14.6,模型基于Python語言的Keras框架實現(xiàn)。

在心電圖判斷模型中,一般使用準(zhǔn)確率、特異性和靈敏度為指標(biāo)對模型進(jìn)行判斷。混淆矩陣就是分別統(tǒng)計模型的歸錯部分和歸對部分的觀測值的個數(shù),將結(jié)果反映在一張表格中,混淆矩陣的每一列代表了預(yù)測的類別,每一列的總數(shù)表示了預(yù)測為該類的數(shù)目,每一行代表著對應(yīng)數(shù)據(jù)的真實類別,每一行的總數(shù)表示對應(yīng)數(shù)據(jù)為該類的數(shù)目。

準(zhǔn)確率(Acc)表示對于給定的測試集,模型準(zhǔn)確分類的概率;特異性(Spe)表示負(fù)例被模型準(zhǔn)確預(yù)測的概率;靈敏度(Sen)表示正例被模型正確分類的概率。

3.2? 結(jié)果分析

圖4中的混淆矩陣表示本文所用模型的判斷結(jié)果。

其中這18類分別為竇性心律、竇性心動過緩、竇性心動過速、T波改變、電軸左偏、電軸右偏、竇性心律不齊、右束支傳導(dǎo)阻滯、室性早搏、完全性右束支傳導(dǎo)阻滯、左心室高電壓、房性早搏、ST-T改變、ST段改變、一度房室傳導(dǎo)阻滯、不完全性右束支傳導(dǎo)阻滯、心房顫動、快速心室率。

可以注意到,由于數(shù)據(jù)樣本數(shù)量的不平衡,模型對0、1、11、12的識別能力較好,這幾種類別分別代表竇性心律、竇性心動過緩、房性早搏和ST-T改變。

表2總結(jié)了本文所提出的方法和其他文獻(xiàn)中已有的判斷方法的結(jié)果,從表中可看出,本文提出方法的數(shù)據(jù)預(yù)測能力更占優(yōu)勢。

4? 結(jié)? 論

傳統(tǒng)學(xué)習(xí)方法分析心電信息主要分為特征提取以及分類兩部分,其中分類一般采用傳統(tǒng)機(jī)器學(xué)習(xí)方法或者傳統(tǒng)CNN模型,前者為線性方法,容易造成特征的缺失,后者手段單一,并且容易學(xué)習(xí)效率和準(zhǔn)確率都無法達(dá)到預(yù)期效果,本文采用LSTM與CNN結(jié)合,并創(chuàng)造性地引入BN算法的方式,既提高了計算速度,又克服了傳統(tǒng)方法的缺陷,并且模型本身已有特征提取功能,并且很好地提取了數(shù)據(jù)上下文信息,最終達(dá)到的測試結(jié)果的準(zhǔn)確率為99.55%,特異性為99.81%,靈敏度為98.66%。

本文提出的方法同時具有推廣性和現(xiàn)實價值,適用范圍廣。在之后的研究中,深度學(xué)習(xí)網(wǎng)絡(luò)結(jié)構(gòu)的優(yōu)化以及與醫(yī)療相關(guān)知識的學(xué)習(xí)都需要進(jìn)一步優(yōu)化,如在LSTM基礎(chǔ)上添加Attention機(jī)制,解決輸入序列較長時最終難以獲得合理的向量表示的問題。

參考文獻(xiàn):

[1] ANNAM J R,SURAMPUDI B R. AAMI Based ECG Heart-Beat Time-Series Clustering Using Unsupervised ELM and Decision Rule [C]//International Conference on Information Technology.IEEE,2017.

[2] ESMAILI A,KACHUEE M,SHABANY M. Nonlinear Cuffless Blood Pressure Estimation of Healthy Subjects Using Pulse Transit Time and Arrival Time [J].IEEE Transactions on Instrumentation and Measurement,2017,66(12):3299-3308.

[3] DASTJERDI A E,KACHUEE M,SHABANY M. Non-invasive blood pressure estimation using phonocardiogram [C]//IEEE International Symposium on Circuits & Systems.IEEE,2017.

[4] 王金海,史夢穎,張興華.基于EMD和ApEn特征提取的心律失常分類研究 [J].儀器儀表學(xué)報,2016,37(S1):168-173.

[5] PECCHIA L,MELILLO P,SANSONE M,et al. Discrimination Power of Short-Term Heart Rate Variability Measures for CHF Assessment [J].IEEE Transactions on Information Technology in Biomedicine,2012,15(1):40-46.

[6] ACHARYA U R,OH S L,HAGIWARA Y,et al. A deep convolutional neural network model to classify heartbeats [J].Computers in Biology and Medicine,2017,89(16):389-396.

[7] KIRANYAZ S,INCE T,HAMILA R,et al. Convolutional Neural Networks for patient-specific ECG classification [C]//Proceedings of the 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC).Milan,Italy:IEEE,2015.

[8] STOJANOVIC R,KARADAGLIC D,MIRKOVI? M,et al. A FPGA system for QRS complex detection based on Integer Wavelet Transform [J].Measurement ence Review,2011,11(4):131-138.

[9] CHRISTOV I,GóMEZ-HERRERO G,KRASTEVA V,et al. Comparative study of morphological and time-frequency ECG descriptors for heartbeat classification [J].Medical Engineering & Physics,2006,28(9):876-887.

[10] NAKAI Y,IZUMI S,NAKANO M,et al. Noise tolerant QRS detection using template matching with short-term autocorrelation [C]//Proceedings of the 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.Chicago:IEEE,2014:250-255.

[11] CHOUHAN V S,MEHTA S S. Detection of QRS Complexes in 12-lead ECG using Adaptive Quantized Threshold [J].International Journal of Computer Ence & Network Security,2008(1):155-163.

[13] IOFFE S,SZEGEDY C. Batch Normalization:Accelerating Deep Network Training by Reducing Internal Covariate Shift [J/OL].arXiv:1502.03167 [cs.LG].(2015-02-11).https://arxiv.org/abs/1502.03167.

[14] 吳浪,曾超.EMD分解與IIR濾波器在心電信號預(yù)處理的應(yīng)用研究 [J].福建電腦,2015,31(6):97-98.

[15] HANNUN A Y,RAJPURKAR P,HAGHPANAHI M,et al. Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network [J].Nature Medicine,2019,25(1):65-69.

[16] 張異凡,黃亦翔,汪開正,等.用于心律失常識別的LSTM和CNN并行組合模型 [J].哈爾濱工業(yè)大學(xué)學(xué)報,2019,51(10):76-82.

作者簡介:余天效(1996—),女,漢族,湖北襄陽人,碩士研究生,研究方向:機(jī)器學(xué)習(xí)。

猜你喜歡
心律失常深度學(xué)習(xí)
有體驗的學(xué)習(xí)才是有意義的學(xué)習(xí)
電子商務(wù)中基于深度學(xué)習(xí)的虛假交易識別研究
MOOC與翻轉(zhuǎn)課堂融合的深度學(xué)習(xí)場域建構(gòu)
大數(shù)據(jù)技術(shù)在反恐怖主義中的應(yīng)用展望
心肌梗死急診介入治療中心律失常的有效護(hù)理干預(yù)
參松養(yǎng)心膠囊治療心律失常的研究分析
從“虛、痰、瘀、毒”論治老年冠心病心律失常探析
中西醫(yī)結(jié)合治療冠心病心律失常療效觀察
今日健康(2016年12期)2016-11-17 19:31:51
曲美他嗪治療急性心肌炎心律失常和心功能療效研究
今日健康(2016年12期)2016-11-17 12:26:26
深度學(xué)習(xí)算法應(yīng)用于巖石圖像處理的可行性研究
主站蜘蛛池模板: 熟妇丰满人妻| 91娇喘视频| 国产精品久久久久久久久久98| 色综合天天综合| 青青青国产视频| 亚洲第一国产综合| 国产在线日本| 青青草一区| 欧美性精品| 国产女主播一区| 亚洲欧洲美色一区二区三区| 日本AⅤ精品一区二区三区日| 久久毛片基地| 精品自窥自偷在线看| 午夜爽爽视频| 亚洲欧美另类日本| 国产本道久久一区二区三区| 日韩区欧美区| 欧美成人午夜在线全部免费| 玖玖精品视频在线观看| 久久天天躁狠狠躁夜夜2020一| 欧美在线网| 亚洲Aⅴ无码专区在线观看q| 青青草原国产| 国产精品区网红主播在线观看| 一级毛片免费观看不卡视频| 黑人巨大精品欧美一区二区区| 58av国产精品| 日韩一级二级三级| 国产成人AV男人的天堂| 日本伊人色综合网| 国产午夜在线观看视频| 欧美性精品不卡在线观看| 91在线无码精品秘九色APP| 国产91特黄特色A级毛片| 久久这里只有精品免费| 97一区二区在线播放| 亚州AV秘 一区二区三区| 国产精品2| 四虎综合网| 亚洲精品国偷自产在线91正片| 午夜国产精品视频| 好久久免费视频高清| 国产精品美女网站| 91成人免费观看| 国产精品久久久精品三级| 欧美精品伊人久久| 久久久亚洲国产美女国产盗摄| 在线国产欧美| 色偷偷综合网| 无码人中文字幕| 中文字幕第1页在线播| 亚洲国产中文精品va在线播放 | 97国内精品久久久久不卡| 又粗又大又爽又紧免费视频| 国产一级做美女做受视频| 99精品国产高清一区二区| 国产精品自在在线午夜| 波多野结衣国产精品| 色135综合网| 蜜臀av性久久久久蜜臀aⅴ麻豆| 色综合久久88色综合天天提莫| 日本少妇又色又爽又高潮| 中文字幕永久在线观看| 最新精品久久精品| 日韩在线影院| 美女扒开下面流白浆在线试听| 五月婷婷亚洲综合| 91在线播放免费不卡无毒| 午夜无码一区二区三区| 久久国产精品电影| 欧美激情视频二区三区| 国产精品主播| 国产日韩欧美一区二区三区在线| 欧美无遮挡国产欧美另类| 欧美日本不卡| 日日拍夜夜操| 欧美综合激情| 国产成+人+综合+亚洲欧美| 刘亦菲一区二区在线观看| 亚洲精品第1页| 亚洲中文无码av永久伊人|