999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

On the nonlinear exponential sums involving the Liouville function

2019-12-26 09:51:22HuangJingYanXiaofeiZhangDeyu
純粹數學與應用數學 2019年4期

Huang Jing,Yan Xiaofei,Zhang Deyu

(School of Mathematics and Statistics,Shandong Normal University,Ji′nan 250014,China)

Abstract:Let λ(n)be the Liouville function.The main purpose of this paper is to consider the case that β is variable and generalize the results in Sankaranarayanan and Sun,the main techniques we used is Vaughan′s identity and Perron′s formula,so we will prove a nontrivial upper bound for the nonlinear exponential sum.

Keywords: nonlinear exponential sums,Liouville function,Vaughan′s identity

1 Introduction

In analytic number theory,the problems concerning nonlinear exponential twisting arithmetic functions arise naturally in investigating equi-distribution theory,zerodistribution of L-functions and so on.We usually consider the general nonlinear exponential sum of the form

Here,n~XmeansX≤n≤2Xande(z)=e2πiz.When,the sumS(X,α)was studied by Vinogradov for the von Mangoldt functionan= Λ(n)[1-2].Foran= Λ(n)andan=μ(n)[3-4](μis the M?bius function)the sumsS(X,α)were studied by reference[5],and it showed that these sums are intimately related toL-functions ofGL2.Iffis a holomorphic cusp form of even weight on the upper half plane,they also proved that a good upper bound of(X,α)implies a quasi Riemann hypothesis forL(s,f).Ifβis variable andanare the Fourier coefficients of automorphic forms.These sums are studied in[6-7].Reference[8]proved an asymptotic formula for the nonlinear exponential sum

wheree(z)=e2πizandk∈Z+.

For prime powerspk,the Liouville functionλ(n)is defined byλ(pk)=(?1)k.Throughout this paper,we consider the sum

As noticed in reference[9],it is amusing to point out that the hypothesis that for someθ<1,

implies the quasi Riemann hypothesis.This approach is due to Polya.It should be pointed out that the Riemann hypothesis is equivalent to the view that the above estimate holds for every.Also,reference[5]considered the sums

withan?nεfor anyε>0 and?being a stabled smooth function compactly supported on R+,and under some hypothesis,it established the bound that

The main purpose of this paper is to consider the case thatβis variable and generalize the results in references[10-11].The principal aim is to prove Theorem 1.1.

Theorem 1.1Letλ(n)be the Liouville function.For any 0α∈R and 0<β≤1,for anyε>0,we have

where the implied constant depends only onε.

Remark 1.1To prove Theorem 1.1,we will apply the method in references[10-11].The main techniques we used is Vaughan′s identity and Perron′s formula.Asβis variable,for working out the dependence ofβ,we must handle the terms withβin the denominator carefully,especially in the error terms.In addition,we must choose new parameters in some place to make the method work.When,our results agree with reference[11]and improved the result in reference[10].

An analogous results can be proved whenλ(n)is replaced byμ(n).We have Theorem 1.2.

Theorem 1.2Letμ(n)be the M?bius function.For any 0α∈R and 0<β≤1,for anyε>0,we have

where the implied constant depends only onε.

Remark 1.2When,we get the upper bound estimate for our nonlinear exponential sums is.This agrees with(2)if we takefor any positive integerq,andan=λ(n)orμ(n).This is the best results so far while conjecturally the exponent ofXexpects to be.

Following references[11]and[10],we apply Vaughan′s identity forλ(n) first.For anyA,B0 andF,G,we have the formal identity:

Here,U≥1 andV≥1 are free parameters to be chosen later,ζ(s)denotes the Riemann zeta-function.We have used that

2 An application of Vaughan′s identity for λ(n)

We will estimateS1,1(X,α)in Section 3 and Section 5,S1,2(X,α),S3,1(X,α)andS3,2(X,α)are of the same type and we will estimate them in Section 4.

3 Some lemmas

In this paper,we replace various exponential sums spirit in Van der Corput′s by exponential integrals and find a bound for the latter.The results from references[13]and[14]are as follows.

Lemma 3.1Letf(x)be a real-valued function,twice differentiable on[a,b]:

(1)Iff′(x)is monotonic,f′(x)≥n>0,orf′(x)≤?n<0 throughout the interval[a,b],we have

(2)Iff′(x)≥m>0,orf′(x)≤?m<0 throughout the interval[a,b],we have

Lemma 3.2Letf(x)be a real-valued function with|f′(x)|≤1?θ|andf′(x)0 on[a,b],we have

Lemma 3.3LetX,T≥1.For any complex numbersan,then

Lemma 3.4Letλandtbe real number whilex,kandβbe positive number.DefineT0=4kπ|λ|(2X)k,we have

Let|λ|≤θand setT?=4kπθ(2X)k,then

4 The estimation of S1,1(X,α)

5 The estimation of S1,2(X,α),S3,1(X,α),S3,2(X,α)

6 The estimation of(X,α)and the proof of Theorem 1.1

7 Proof of Theorem 1.2

主站蜘蛛池模板: 波多野结衣在线一区二区| 日韩av无码精品专区| vvvv98国产成人综合青青| 精品无码一区二区三区电影| 伊人色婷婷| 国产亚洲精| 久久成人国产精品免费软件| 色综合中文综合网| 国产欧美网站| 国产精品一区在线观看你懂的| 亚洲无线观看| 综合人妻久久一区二区精品 | 日韩高清欧美| a毛片在线| jizz在线免费播放| 伊人久久大香线蕉影院| 看看一级毛片| 欧美精品啪啪一区二区三区| 国产成人亚洲综合A∨在线播放| 国产精品一线天| 久久99热66这里只有精品一| 无码国产偷倩在线播放老年人 | 亚洲天堂高清| 97在线观看视频免费| 丁香婷婷久久| 人人妻人人澡人人爽欧美一区| 18黑白丝水手服自慰喷水网站| 黄色一级视频欧美| 日本www在线视频| 欧美成人精品欧美一级乱黄| 国产麻豆精品久久一二三| 欧美啪啪精品| 婷婷综合亚洲| 精品1区2区3区| www.精品国产| 日韩av资源在线| 日韩精品欧美国产在线| 2024av在线无码中文最新| 99精品高清在线播放| 免费毛片a| 国产91丝袜在线播放动漫 | 久久亚洲高清国产| 日韩精品无码不卡无码| 亚洲中文久久精品无玛| 亚洲水蜜桃久久综合网站| 精品日韩亚洲欧美高清a| 亚洲水蜜桃久久综合网站 | 欧美午夜小视频| 丰满人妻一区二区三区视频| 亚洲中文字幕日产无码2021| 欧美午夜网站| 亚瑟天堂久久一区二区影院| 2019年国产精品自拍不卡| 试看120秒男女啪啪免费| 怡红院美国分院一区二区| 国产麻豆福利av在线播放| 一本久道热中字伊人| 性欧美精品xxxx| 国产全黄a一级毛片| 成年人视频一区二区| 呦女亚洲一区精品| 国产高清在线观看| 丁香婷婷激情网| 欧美日韩精品一区二区在线线| 色婷婷亚洲综合五月| 国产毛片不卡| 久久综合五月| 国产激情在线视频| 亚洲精品第1页| 国产午夜精品鲁丝片| 日本精品视频一区二区| 亚洲天堂777| 精品视频福利| 在线国产欧美| 国产在线精彩视频论坛| 亚洲无码精品在线播放| 91欧美在线| 毛片网站免费在线观看| 午夜国产大片免费观看| аv天堂最新中文在线| 久久这里只精品国产99热8| 福利在线不卡一区|