沈文清 張強 張怡 漆正堂 孫易 丁樹哲



摘? ? 要:探討不同方式急性運動結合二甲雙胍對2型糖尿病小鼠血糖穩態及肝臟糖異生的作用,從運動中血糖變化、肝臟糖異生及調控因子相關mRNA表達水平的角度為治療2型糖尿病提供新的運動處方和研究靶點。方法:采用4周高脂膳食結合鏈脲佐菌素(STZ,100 mg/kg)方法構建2型糖尿病小鼠模型,建模成功后隨機分為NC、NCR、NCE、DC、DCR、DCE、HMC、HMR和HME共9組,每組8只小鼠。HMC、HMR和HME小鼠在末次運動前腹腔注射200 mg/kg HCloMetformin溶液,NC和DC組小鼠相應腹腔注射0.9%生理鹽水。NCR、DCR和HMR小鼠進行急性抗阻運動;NCE、DCE和HME小鼠進行急性耐力運動。末次運動結束后3 h處死小鼠并取樣。采用ELISA及RT-PCR技術檢測相關血清指標和相關基因mRNA表達。結果:4周高脂膳食結合一次性腹腔注射STZ(100 mg/kg)成功構建2型糖尿病小鼠模型;相比DCE和DCR小鼠,HME和HMR小鼠血糖值和血糖波動幅度都顯著下降;相比于HMC小鼠,HMR和HME小鼠附睪白色脂肪組織重量百分比、血清葡萄糖、血清TG和肝臟乳酸/丙酮酸濃度比值都顯著下降,HMR組小鼠GSP和血清T-CHO顯著降低,而HMR和HME小鼠肝糖原含量顯著升高;相比HMC小鼠,HMR和HME小鼠肝臟糖異生相關因子PEPCK、G6pc和Gck mRNA表達顯著升高,肝臟FBP和GLUT2 mRNA表達顯著降低;相比于HMC小鼠,HMR和HME小鼠調控肝臟糖異生相關因子AMPKα2、CREB、PGC-1α、Keap1和Nrf2 mRNA表達都顯著升高,且HMR小鼠肝臟AMPKα1 mRNA表達顯著升高。結論:急性抗阻運動和急性耐力運動結合二甲雙胍均可改善2型糖尿病小鼠運動中血糖的穩態,但急性抗阻運動結合二甲雙胍能更有效改善2型糖尿病小鼠血糖穩態和肝臟糖異生情況。其中機制可能為不同方式的急性運動結合200 mg/kg劑量的二甲雙胍可顯著增加2型糖尿病小鼠肝臟AMPK-CREB-PGC-1α-PEPCK/G6Pase/GLUT2信號通路mRNA的表達。
關鍵詞:急性抗阻運動;急性耐力運動;二甲雙胍;血糖穩態;肝臟糖異生
中圖分類號:G 804.5? ? ? ? ? 學科代碼:040302? ? ? ? ? ?文獻標識碼:A
Abstract:Objective: The purpose of the present study was to investigate the effects of different acute exercise combined with metformin on glucose homeostasis and hepatic gluconeogenesis in type 2 diabetic mice, hoping to provide new exercise treatment prescriptions and study protein targets for curing type 2 diabetes from the perspective of the glucose homeostasis in acute exercise,? hepatic gluconeogenesis and regulatory factors relative mRNA level expression. Methods: The type 2 diabetic mice were established by feeding high fat diet and intraperitoneal injection with STZ(Streptozotocin, 100mg/kg). These mice were divided into 9 groups randomly, such as Normal Control group(NC), Normal Control Resistance Exercise group(NCR), Normal Control Endurance Exercise group(NCE), Diabetic Control group (DC), Diabetic Control Resistance Exercise (DCR), Diabetic Control Endurance Exercise(DCE), High dose of Metformin Control group(HMC), High dose of Metformin acute Resistance Exercise group(HMR) and High dose of Metformin acute Endurance Exercise group (HME), n=8 in each group. HMC, HMR and HME group mice were intraperitoneally injected with HCl·Metformin solution(200mg/kg weight) and NC and DC group mice were intraperitoneally injected with 0.9% saline. NCR, DCR and HMR group mice performed acute resistance exercise; NCE, DCE and HME group mice performed acute endurance exercise. All mice were sacrificed and selected with samples in 3 hours after acute exercise. ELISA was used for examining relative serum indicators and RT-PCR was used for testing relative gene mRNA expression. Results: The protocol of 4-week high fat diet and one time intraperitoneal injection with STZ successfully developed the model of type 2 diabetic mice. Compared to DCE and DCR group mice, blood glucose and the fluctuation change were significantly decreased in HME and HMR group mice. Compared to HMC group mice, the percentage of epididymal white adipose tissue content, serum glucose, serum TG and hepatic [lactate]/[pyruvate] ratio were all significantly decreased in HMR and HME group mice,? glycosylated serum protein and serum T-CHO were both declined in HMR group mice, but the percentage of liver content was strongly increased in HMR and HME group mice. Compared to HMC group mice, relative hepatic gluconeogenic factors PEPCK, G6pc and Gck mRNA expression were clearly risen and hepatic FBP and GLUT2 mRNA expression were aggressively decreased. Compared to HMC group mice, relative hepatic gluconeogenic regulators AMPKα2,? CREB,? PGC-1α, Keap1 and Nrf2 mRNA expression were significantly increased in HMR and HME group mice and hepatic AMPKα1 mRNA expression was clearly risen in HMR group mice. Conclusions: Acute resistance exercise and acute endurance exercise combined with 200mg/kg dose of metformin can improve glucose homeostasis in type 2 diabetic mice, but acute resistance exercise combined with metformin is more effective than acute endurance exercise combined with metformin in improving glucose homeostasis and hepatic gluconeogenesis in type 2 diabetic mice,? possibly via increasing relative mRNA expression of hepatic AMPK-CREB-PGC-1α-PEPCK/G6Pase/GLUT2 signaling pathways.
Keywords: acute resistance exercise; acute endurance exercise; metformin; glucose homeostasis; hepatic gluconeogenesis
二甲雙胍作為雙胍類藥物,提取自山羊豆堿,問世以來成為各國廣泛使用的一線口服降糖類藥物,主要治療2型糖尿病及其并發癥。近年有研究發現二甲雙胍具有減肥、抗癌和延長壽命等功效。二甲雙胍發揮作用的核心機制是改變細胞的能量代謝[1],有效降低2型糖尿病患者FPG(空腹血糖)、PPG(餐后血糖)和HbA1c(糖化血紅蛋白)[2-4]。二甲雙胍治療2型糖尿病的作用機制包括:1)直接通過抑制肝臟糖異生降低肝臟葡萄糖和ATP生成[5];2)二甲雙胍促進肌肉和脂肪組織對葡萄糖的攝取和利用,提高L6肌細胞中GLUT1/GLUT4表達比率,降低餐后血糖[6];3)減少小腸內葡萄糖吸收;4)通過抑制線粒體復合物I酶的活性和線粒體氧化磷酸化(OXPHOS),抑制ATP合成,激活AMPK活性,促進線粒體中脂肪酸β氧化,抑制脂肪合成和胰島素抵抗作用[7];5)改善2型糖尿病患者胰島素敏感性,提高胰島β細胞對血糖的應答反應[8-9];6)GLP-1(胰高血糖素樣肽-1)水平的提高[10]。
肝臟具有促進氧化代謝、合成肝糖原和分泌蛋白質等作用,對維持機體健康起到重要作用。二甲雙胍對肝臟糖異生的作用與2型糖尿病的發病機制緊密相關,有研究發現,二甲雙胍抑制線粒體復合物I酶活性,從而抑制胰高血糖素誘導的cAMP和蛋白激酶A(PKA)的信號傳導[1],其他研究證實,二甲雙胍抑制線粒體甘油磷酸脫氫酶[11],通過促進CREB結合蛋白(CBP)磷酸化抑制cAMP信號通路[12],不依賴LKB1/AMPK信號通路的PGC-1α mRNA過表達[5]和AMPK信號通路降低肝臟葡萄糖生成作用機制[13]。二甲雙胍結合運動對2型糖尿病血糖穩態的影響,則既可能有促進作用[14-15],也可能有抑制作用[16-17]。關于二甲雙胍結合運動對2型糖尿病小鼠肝臟糖異生作用的研究甚少。本研究試圖通過探討不同急性運動結合有效劑量二甲雙胍(200 mg/kg)[18-19]對2型糖尿病小鼠血糖穩態及肝臟糖異生的作用,探索出有效改善2型糖尿病小鼠血糖穩態的運動結合二甲雙胍處方及新的治療靶點。
1? ?材料與方法
1.1? 實驗對象
清潔級4周齡C57BL/6J雄性小鼠84只,體質量為(12.39±0.13)g。其中:24只小鼠隨機分為NC(普通對照組)、NCR(普通對照急性抗阻運動組)和NCE(普通對照急性耐力運動組),每組各8只,喂養普通飼料。60只小鼠進行2型糖尿病小鼠造模,采用4周高脂飼料膳食(45%脂肪含量),于小鼠9周齡一次性腹腔注射STZ(100 mg/kg),每隔3 d記錄小鼠空腹血糖,注射后第9 d空腹血糖值高于11.1 mmol/L,即為造模成功。48只小鼠造模成功,隨機分為6組:DC(糖尿病對照組)、DCR(糖尿病對照急性抗阻運動組)、DCE(糖尿病對照急性耐力運動組)、HMC(高劑量二甲雙胍糖尿病對照組)、HMR(高劑量二甲雙胍糖尿病急性抗阻運動組)和HME(高劑量二甲雙胍糖尿病急性耐力運動組),每組各8只。實驗中進行一次不同方式的急性運動干預。于運動前1 h,NCR、DCR、NCE和DCE小鼠分別腹腔注射0.9%生理鹽水,HMR和HME小鼠腹腔注射200 mg/kg HCl·Metformin溶液,并且在不同時間段測量各組小鼠尾間靜脈血糖值。NC、DC和HMC小鼠不做運動干預,NC和DC小鼠于末次急性運動干預前腹腔注射0.9%生理鹽水,HMC、HMR和HME小鼠腹腔注射200 mg/kg HCl·Metformin溶液。
1.2? 實驗對象的運動方案
大量的研究探討了長期運動干預結合二甲雙胍對2型糖尿病血糖穩態和肝臟糖異生的作用,而急性運動干預結合二甲雙胍對其血糖穩態及相關分子機制的研究較少。有研究發現,12周中等強度跑臺運動訓練結合二甲雙胍治療顯著改善糖尿病大鼠的血糖穩態和抑制線粒體誘導的脂肪酸合成[20]。抗阻訓練結合二甲雙胍改善健康老年人肌肉中炎癥反應,促進肌肉能量代謝[21]。因此,本研究采用急性抗阻和急性耐力運動結合二甲雙胍的干預方式,觀察2種運動模式能否改善2型糖尿病小鼠運動中高血糖現象和運動后抑制肝臟糖異生作用。急性抗阻運動,又名爬梯實驗,每次自下而上于30 s內爬完坡度為85 °的1 m爬梯,5次/組,共3組;急性耐力運動,又名跑臺實驗,中等強度運動速度20 m/min,坡度為0 °,共50 min。
1.3? ELISA和RT-PCR
ELISA酶聯免疫試劑盒測試小鼠血清相關指標,GSP、血清葡萄糖、血清胰島素、血清TG和T-CHO。小鼠血糖采用尾間靜脈血,以ACCU-CHEK Active羅氏活力型血糖儀進行檢測。主要包括4個過程:1)提取肝臟組織mRNA。冰上稱取肝臟組織約50 mg,使用Invitrogen Trizol方法提取肝臟mRNA。2)mRNA濃度和純度檢測。超微紫外/可見光分光光度計來測所提取的mRNA的濃度和純度。3)mRNA反轉錄為cDNA。將提取的mRNA用TOYOBO FSQ101反轉錄試劑盒反轉錄為cDNA。4)RT-PCR擴增。ABI Step One型實時熒光定量PCR儀檢測肝臟調控血糖穩態和肝臟糖異生相關基因,擴增所用的熒光染料為TOYOBO QPK201 SYBR Green,實驗所用引物均由上海生物工程有限公司合成。
1.4? 統計學分析
本研究各數據結果均采用M±SE的方式表示,統計軟件為SPSS 22.0,組間分析采用單因素方差分析。作圖使用Graph pad Prism5軟件。P<0.05代表差異具有顯著性,P<0.01代表差異具有非常顯著性。
2? ?結果
2.1? 高脂膳食結合STZ構建2型糖尿病小鼠模型
如圖1所示, 4周高脂膳食(45%脂肪含量)使高脂膳食組(HFD)小鼠體質量在第1~4周均顯著高于普通對照組(NC),P<0.01。HFD小鼠8周齡體質量顯著比NC高13.8%。于小鼠9周齡空腹12 h后一次性腹腔注射STZ(鏈脲佐菌素,100 mg/kg),每隔3 d,監測小鼠的空腹血糖值,與STZ注射后第9 d,測得小鼠空腹血糖值>11.1 mmol/L,即2型糖尿病造模成功。2型糖尿病小鼠(T2D)空腹血糖值為(11.4±0.7)mmol/L,顯著高于NC(P<0.01)。隨后進行的葡萄糖耐量實驗(IPGTT)和胰島素耐量實驗(ITT)都于小鼠空腹6 h后進行,測定小鼠尾間靜脈血糖值,實驗發現2型糖尿病小鼠血糖值在不同時間段都顯著高于NC,且總體變化趨勢一致。2型糖尿病小鼠葡萄糖AUC和胰島素AUC(曲線下面積)都顯著高于NC(P<0.01)。綜上所述,4周高脂膳食結合腹腔注射STZ(100 mg/kg)成功構建2型糖尿病小鼠模型。
2.2? 不同方式急性運動結合二甲雙胍對2型糖尿病小鼠血糖穩態的影響
如圖2所示,急性抗阻運動和急性耐力運動結合200 mg/kg劑量二甲雙胍的干預模式均于運動干預前1 h針對不同組別小鼠分別腹腔注射生理鹽水(NCE、DCE、NCR、DCR)和二甲雙胍溶液(HME和HMR),在運動前、中、后不同時間點檢測不同組別小鼠的尾間靜脈血血糖值,急性耐力運動于運動前60 min每隔30 min測血糖,運動中50 min每隔10 min測血糖,運動后恢復階段每隔10 min測血糖,急性抗阻運動血糖檢測時間點于運動前和運動后恢復階段與急性耐力運動一致,共進行3組抗阻運動(第1組S1、第2組S2和第3組S3),每組5次,每次自下而上于30 s內爬完坡度為85 °的1 m爬梯,每組抗阻運動結束后檢測血糖值,如圖2所示。相比于DCE和DCR小鼠,急性耐力運動和急性抗阻運動結合200 mg/kg劑量的二甲雙胍都可降低2型糖尿病小鼠運動中血糖波動,促進其血糖穩態;因為運動中和運動后恢復階段T2D小鼠血糖值均顯著下降,并且血糖波動幅度降低。但是HME和HMR小鼠整體血糖水平都顯著高于NCE和NCR(皆P<0.01)。
2.3? 不同方式急性運動結合二甲雙胍對2型糖尿病小鼠體成分的影響
如圖3所示,急性抗阻運動和急性耐力運動結合二甲雙胍均未能顯著改善2型糖尿病小鼠的體質量,但相較NC,DC小鼠肝臟含量百分比(肝指數)顯著升高(P<0.05),其余各組未見顯著差異。相較HMC,HMR組小鼠附睪白色脂肪含量百分比有下降的趨勢(P=0.061)。
2.4? 不同方式急性運動干預結合二甲雙胍對2型糖尿病小鼠血液相關指標的影響
如圖4所示,與NC比較,DC和HMC小鼠血清葡萄糖和糖化血清蛋白都顯著升高,分別為P<0.01和P<0.05,同時DC和HMC小鼠血清TG(分別為P<0.01和P<0.05)和血清T-CHO都顯著升高(分別為P<0.01和P<0.01)。與HMC比較,HMR小鼠血清葡萄糖和糖化血清蛋白都顯著降低,分別為P<0.01和P<0.05,同時HMR小鼠血清TG和血清T-CHO都顯著降低(P<0.01);與HMC比較,HME小鼠血清葡萄糖和血清TG都顯著降低(分別為P<0.01和P<0.05),其他血清相關指標沒有得到顯著改善。與HMR比較,HME小鼠糖化血清蛋白顯著升高(P<0.01),血清胰島素顯著降低(P<0.05)。
2.5? 不同方式急性運動結合二甲雙胍對2型糖尿病小鼠肝糖原合成和肝臟氧化還原狀態的影響
如圖5所示,與NC比較,DC和HMC小鼠肝糖原和丙酮酸含量顯著升高(P<0.01),而DC小鼠肝臟乳酸/丙酮酸濃度比值顯著降低(P<0.01)。與DC比較,HMC小鼠肝臟乳酸/丙酮酸濃度比值顯著升高(P<0.01)。與HMC比較,HMR和HME小鼠肝糖原含量顯著升高(P<0.01),而HMR小鼠肝臟乳酸含量、丙酮酸含量和肝臟乳酸/丙酮酸濃度比值都顯著降低(P<0.01,P<0.05,P<0.05);而HME小鼠只有肝臟乳酸/丙酮酸濃度比值顯著降低(P<0.01)。相較HMR,HME小鼠肝臟丙酮酸含量顯著升高(P<0.01)。
2.6? 不同方式急性運動結合二甲雙胍對2型糖尿病小鼠肝臟糖異生相關基因mRNA表達的影響
如圖6所示,與DC比較,HMC小鼠肝臟PEPCK和G6pc mRNA表達顯著下降(P<0.01),與葡萄糖轉運相關的肝臟GLUT2 mRNA表達顯著升高(P<0.05);但HMC小鼠肝臟Fbp (FBP1) mRNA表達未見顯著性差異。與HMC比較,HMR和HME小鼠肝臟PEPCK和G6pc mRNA表達顯著升高(P<0.01,P<0.05,P<0.01,P<0.01),肝臟Fbp mRNA表達顯著下降(P<0.01),與葡萄糖轉運相關的肝臟GLUT2 mRNA表達顯著降低(P<0.01),肝臟Gck mRNA表達顯著升高(P<0.01)。與HMR比較,HME小鼠肝臟G6pc mRNA表達顯著升高(P<0.01)。
2.7? 不同方式急性運動結合二甲雙胍對2型糖尿病小鼠調控肝臟血糖穩態相關基因mRNA表達的影響
如圖7所示,與NC比較,DC小鼠肝臟PGC-1α顯著下降(P<0.01),其他與調控肝臟血糖穩態相關的基因mRNA表達未見顯著差異。與DC比較,HMC小鼠肝臟AMPKα2、Nrf2、Keap1和CREB mRNA表達都顯著下降(P<0.01,P<0.05,P<0.05,P<0.01),而肝臟AMPKα1和PGC-1α mRNA表達未見顯著差異。與HMC比較,HMR和HME小鼠肝臟AMPKα2(P<0.05)、PGC-1α(P<0.05)、Nrf2(P<0.05)、Keap1(P<0.01和P<0.05)和CREB(P<0.01)mRNA表達都顯著升高,只有HMR小鼠肝臟AMPKα1 mRNA表達顯著升高(P<0.01),HME小鼠肝臟AMPKα1 mRNA表達未見顯著差異。與HMR比較,HME小鼠肝臟PGC-1α顯著升高(P<0.05)。
3? ?討論
3.1? 不同急性運動結合二甲雙胍對2型糖尿病小鼠血糖穩態和體成分的影響
本研究發現,200mg/kg劑量的二甲雙胍結合不同方式的急性運動干預方式(急性抗阻運動和急性耐力運動)都有助于降低2型糖尿病小鼠血糖值和血糖波動幅度。當前,關于急性運動干預結合二甲雙胍對2型糖尿病血糖穩態作用的研究較少。6個月二甲雙胍治療可有效降低有高胰島素血癥和有2型糖尿病家族史的肥胖青少年的空腹血糖水平、血清胰島素水平和BMI,顯著提高其胰島素敏感性,降低2型糖尿病的患病風險。二甲雙胍還可改善2型糖尿病患者急性中等強度功率自行車運動中的血糖穩態[14]。長期運動干預結合二甲雙胍服用和能量限制飲食結構有效降低肥胖青少年的2型糖尿病患病風險[22]。有研究發現,4周游泳運動結合450 mg/kg劑量的二甲雙胍治療顯著降低胰島素抵抗大鼠附睪白色脂肪重量百分比[23]。二甲雙胍通過調控小鼠晝夜節律和AMPK-NAMPT-SIRT1信號通路抑制db/db小鼠白色脂肪組織堆積[24]。同時二甲雙胍可促進人體脂肪組織脂聯素的分泌和利用,促進脂代謝[25]。2型糖尿病的形成伴隨脂代謝紊亂,運動結合二甲雙胍可顯著降低雌性糖尿病肥胖大鼠(ZDF)骨骼肌FAT/CD36豐富度、神經酰胺和二酰甘油(DAG)含量,促進游離脂肪酸氧化,降低脂肪堆積,從而抑制高脂膳食誘導的胰島素抵抗和2型糖尿病的形成[26]。本研究認為,急性抗阻運動和急性耐力運動結合200 mg/kg劑量的二甲雙胍雖未顯著改善2型糖尿病小鼠的體質量,但DC小鼠肝臟質量百分比(肝臟質量/體質量,肝指數)顯著高于NC。與HMC比較,HMR和HME小鼠附睪白色脂肪重量百分比顯著降低,說明急性抗阻運動和急性耐力運動結合二甲雙胍促進2型糖尿病小鼠脂肪酸氧化和脂代謝,降低其體脂百分比。
3.2? 不同急性運動結合二甲雙胍對2型糖尿病小鼠血清和肝臟調節血糖代謝相關指標的影響
4周游泳運動干預結合450 mg/kg劑量的二甲雙胍可顯著降低胰島素抵抗大鼠的血清胰島素水平[23]。短期中等強度游泳運動結合200 mg/kg劑量的二甲雙胍可顯著降低2型糖尿病妊娠期小鼠的血糖值和提高胰島素敏感性,提高葡萄糖和脂肪氧化代謝水平[27]。急性和長期運動干預都間接促進2型糖尿病大鼠肝臟Leptin-AMPK-ACC信號通路的激活,增加胰島素敏感性,然而只有長期運動干預可改善其血糖代謝和肝臟糖異生[28]。本研究認為,急性抗阻運動和急性耐力運動結合200 mg/kg劑量的二甲雙胍均顯著降低了2型糖尿病小鼠的血清葡萄糖、血清甘油三酯;與急性耐力運動結合二甲雙胍相比,急性抗阻運動結合二甲雙胍更能顯著降低小鼠糖化血清蛋白和血清總膽固醇。運動中胰島素水平的降低抑制胰高血糖素刺激的葡萄糖生成和糖異生,從而降低高血糖發生率和預防2型糖尿病[29]。但本研究未見到不同的運動干預方式結合200 mg/kg劑量的二甲雙胍能降低2型糖尿病小鼠的血清胰島素水平,可能因為運動干預時間和二甲雙胍用藥時間較短,不能誘導血清胰島素水平下調。與HMR比較,HME小鼠的血清胰島素顯著降低,說明急性耐力運動結合二甲雙胍優于急性抗阻運動結合二甲雙胍對2型糖尿病小鼠血清胰島素的調節作用。綜上所述,不同方式的急性運動干預結合200 mg/kg劑量的二甲雙胍均可改善2型糖尿病小鼠的血糖和血脂代謝,促進血糖穩態。
4周游泳運動結合二甲雙胍、阿卡波糖治療顯著增加db/db小鼠的肝糖原含量[30]。研究發現,與HMC比較,急性抗阻運動和急性耐力運動結合200 mg/kg劑量的二甲雙胍可顯著提高2型糖尿病小鼠的肝糖原含量。同時急性游泳運動也顯著增加糖尿病大鼠的肝糖原含量[31]。30 d自主轉輪運動顯著提高STZ誘導的糖尿病小鼠的肝糖原儲備,并且抑制高血糖的發生[32]。2周中等強度有氧運動有效緩解糖尿病大鼠因急性運動引起的血糖升高,同時增加其肝糖原儲備[33]。有研究表明,肝臟乳酸/丙酮酸濃度比值不僅反映肝臟氧化還原狀態[34],也是肝臟糖異生的關鍵指標,反之濃度比值升高,會加快肝臟糖異生過程[35],肝臟乳酸/丙酮酸濃度比值的降低抑制胰高血糖素的功效,進而抑制高血糖的發生[36]。4周二甲雙胍口服治療和一次性靜脈注射皆顯著提高大鼠心臟和肝臟組織中乳酸/丙酮酸濃度比值,促進其氧化還原狀態的改善[37]。單次低劑量二甲雙胍(50 mg/kg)治療使SD大鼠肝臟乳酸/丙酮酸濃度比值顯著升高,改善肝臟的氧化還原狀態[11]。二甲雙胍除了對糖異生相關基因表達起抑制作用,另一重要原因是二甲雙胍抑制肝臟乳酸的攝取和利用[38]。研究認為,與DC比較,單次200 mg/kg劑量的二甲雙胍治療顯著提高2型糖尿病小鼠肝臟乳酸/丙酮酸濃度比值,改善肝臟細胞質氧化還原狀態,一定程度上抑制2型糖尿病小鼠肝臟糖異生作用。與HMC比較,HMR小鼠肝臟乳酸、丙酮酸和肝臟乳酸/丙酮酸濃度比值顯著降低,HME小鼠肝臟乳酸/丙酮酸濃度比值顯著降低;同時與HMR比較,HME小鼠肝臟丙酮酸含量顯著升高,可能因為急性運動干預結合二甲雙胍抑制肝細胞胞漿中的氧化還原狀態,通過促進肝細胞線粒體中氧化還原狀態抑制肝臟糖異生和促進血糖穩態。更多研究傾向于長期運動干預結合二甲雙胍治療2型糖尿病肝臟糖異生和血糖穩態,并且單一二甲雙胍治療在一定程度上削弱了運動促進機體氧化還原的作用[39]和運動抑制肥胖小鼠的肝臟糖異生作用[40]。與單一采用二甲雙胍治療相比,長期運動干預(體質量降低7%和每周150 min的體力活動)更有助于降低2型糖尿病的患病風險[41]。超重或肥胖人群通過一定強度的運動訓練,可降低2型糖尿病的患病風險和體質量[42]。如何有機地結合運動干預和適宜劑量的二甲雙胍,改善糖尿病小鼠或糖尿病患者運動中的血糖穩態,抑制其肝臟糖異生作用,有待進一步研究。
3.3? 不同急性運動結合二甲雙胍對2型糖尿病小鼠調節肝臟糖異生相關基因mRNA的影響
二甲雙胍改善糖尿病狀態下受干擾的膜流動性和蛋白質的構型,同時調節葡萄糖轉運或代謝過程中所需正常功能蛋白質—蛋白質或蛋白質—脂肪的相互作用,細胞膜的變化可能對二甲雙胍作用于胰島素受體信號傳導和各相關功能系統協同的作用[43]。運動能夠降低高血糖,從源頭抑制葡萄糖合成,并增加脂肪酸攝取和代謝,通過體內循環系統將多余的葡萄糖代謝。本研究中,與DC比較,HMC小鼠肝臟PEPCK和G6pc mRNA表達顯著降低,GLUT2 mRNA表達顯著升高,表明單一的二甲雙胍治療抑制2型糖尿病小鼠肝臟糖異生相關基因的轉錄水平,促進相關肝臟葡萄糖轉運蛋白mRNA表達。與HMC比較,HMR和HME小鼠肝臟PEPCK、G6pc和Gck mRNA表達顯著升高,肝臟Fbp和GLUT2 mRNA表達顯著降低。在Ⅰ型糖尿病患者中發現,肝臟葡萄糖生成隨運動強度的增加而增多,同時伴隨糖異生作用的增強[44]。運動改善肝臟對胰島素敏感性和對葡萄糖的攝取能力,長時間運動反向抑制肝臟葡萄糖輸出[45],側面反映急性運動干預可能促進肝臟葡萄糖輸出,所以PEPCK和G6pc mRNA表達上調,而GLUT2 mRNA轉錄水平下調。本研究認為,急性運動干預結合200 mg/kg劑量的二甲雙胍有效調節糖尿病小鼠運動中血糖穩態,但短期二甲雙胍治療結合急性運動干預未顯著提高胰島素抵抗患者的胰島素敏感性,可能因為二者結合削弱運動對2型糖尿病的干預效果[20,46]。長期二甲雙胍和/或運動干預可顯著提高2型糖尿病前期患者的胰島素敏感性,但存在二甲雙胍鈍化運動訓練效益的現象[47]。AMPK是調節細胞能量穩態的重要調控因子,含有α、β、γ共3種亞基。二甲雙胍和細胞內AMP/ATP濃度比值的增加激活AMPK活性,從而抑制肝臟糖異生過程和線粒體呼吸鏈復合物酶Ⅰ活性。AMPK激活劑二甲雙胍和AICAR在一定程度上改善患有代謝綜合征(包括2型糖尿病)小鼠的運動表現[48]。AMPK的活化促進脂代謝,調控2型糖尿病的胰島素敏感性[1]。短期二甲雙胍治療未顯著提高AMPKα2 KD(AMPKα2基因敲低)小鼠骨骼肌中胰島素刺激的葡萄糖攝取,而長期二甲雙胍治療誘導依賴AMPK胰島素刺激的骨骼肌葡萄糖攝取能力提高[49]。Bang等發現IPMK(肌醇多磷酸多激酶)在二甲雙胍介導的LKB1/AMPK信號通路中發揮重要作用,可能是治療2型糖尿病等代謝類疾病的新靶點[50]。
2型糖尿病的形成使多個組織器官的線粒體受損,包括線粒體形態學異常、線粒體含量減少、線粒體相關基因表達譜改變及酶活性降低[51-54]。2型糖尿病的形成與線粒體功能障礙息息相關,并且CREB、PGC-1α、Nrf2和Keap1是調控線粒體生物發生的重要基因。CREB是肝臟糖異生作用中PGC-1α的上游靶蛋白,空腹狀態下CREB誘導metformin激活的PGC-1α表達,促進PGC-1α誘導肝臟糖異生作用的激活,調控血糖穩態[55]。二甲雙胍誘導SHP基因表達的延遲效應,抑制依賴CREB的肝臟糖異生[56]。二甲雙胍介導的CBPS436位點磷酸化抑制肝臟糖異生作用[57]。通過CBP磷酸化抑制cAMP信號通路,二甲雙胍抑制肝臟糖異生[12]。胰島素抑制肝臟葡萄糖生成,通過磷酸化CBP和使糖異生相關基因CREB-CBP復合物解體,其生物學作用通過二甲雙胍促進p300結構性聯接CREB[58]。有研究表明,PGC-1α是線粒體生物發生的有效誘導因子[59-60]。該作用通過PGC-1α與相關核轉錄因子(Nrf-1、Nrf-2和Tfam(線粒體轉錄因子A))結合和共激活,繼而誘導與線粒體DNA復制相關的調控因子,發揮其調控作用[61]。相比野生型小鼠,PGC-1α基因過表達小鼠壽命更長,PGC-1α過表達促進線粒體功能的增強,同時增加胰島素敏感性和降低氧化應激損傷[62]。本研究認為,與NC比較,DC小鼠肝臟PGC-1α mRNA表達顯著降低。PGC-1α基因編碼錯義突變與2型糖尿病的形成顯著相關,并且發現2型糖尿病患者體內PGC-1α基因表達和氧化磷酸化水平顯著降低[51,63- 64]。急性抗阻運動和急性耐力運動結合二甲雙胍顯著增加2型糖尿病小鼠肝臟PGC-1α mRNA表達,促進線粒體呼吸鏈電子傳遞和氧化磷酸化,一定程度抑制肝臟糖異生。Keap1和Nrf2是抗氧化轉錄因子,降低2型糖尿病中胰島β細胞和肝細胞ROS含量,促進其抗氧化、抗炎癥功能和自噬作用[65]。Nrf2的活性由輔助因子Keap1氧化敏感的半胱氨酸殘基控制,當Keap1被還原時,Nrf2發生蛋白酶體降解。半胱氨酸151位點氧化使Nrf2-Keap1復合物解體,使Keap1具有轉錄活性[66]。二甲雙胍和運動都可以通過依賴Nrf2的方式激活抗氧化防御機制,促進2型糖尿病狀態的改善[66]。本研究認為,與HMC比較,HMR和HME小鼠肝臟Nrf2和Keap1 mRNA表達顯著升高。腸降血糖素相關的DPP4抑制劑激活Nrf2蛋白活性[66],抑制Nrf2蛋白活性削弱腫瘤轉移[67],并減少細胞凋亡和自噬[68]。本研究認為,與DC比較,單次200 mg/kg劑量的二甲雙胍治療顯著降低2型糖尿病小鼠肝臟CREB mRNA表達,抑制肝臟糖異生;與HMC比較,HMR和HME小鼠肝臟CREB mRNA表達顯著升高。研究創新之處在于證實急性抗阻運動和急性耐力運動結合200 mg/kg劑量的二甲雙胍皆可能通過顯著增加2型糖尿病小鼠肝臟AMPK-CREB-PGC-1α-PEPCK/G6Pase/GLUT2信號通路mRNA表達改善其血糖穩態和調控肝臟糖異生作用,該通路可能是未來治療2型糖尿病、調控血糖穩態和肝臟糖異生的有效靶點。
4? ?結論
急性抗阻運動和急性耐力運動結合200 mg/kg劑量的二甲雙胍均可改善2型糖尿病小鼠血糖穩態,但急性抗阻運動結合二甲雙胍可更有效改善2型糖尿病小鼠血糖穩態和肝臟糖異生,可能通過提高肝臟AMPK-CREB-PGC-1α-PEPCK/G6Pase/GLUT2信號通路mRNA的表達發揮作用。
參考文獻
[1]? PERNICOVA I, KORBONITS M. Metformin--mode of action and clinical implications for diabetes and cancer[J]. Nature reviews(Endocrinology), 2014, 10(3): 143.
[2]? 中華醫學會糖尿病學分會.中國2型糖尿病防治指南:2013年版[J].中國糖尿病雜志,2014,22(8):2.
[3]? GARBER A J, DUNCAN T G, GOODMAN A M, et al. Efficacy of metformin in type II diabetes: results of a double-blind, placebo-controlled, dose-response trial[J]. The American Journal of Medicine, 1997, 103(6): 491.
[4]? HOFFMANN J, SPENGLER M. Efficacy of 24-week monotherapy with acarbose, metformin, or placebo in dietary-treated NIDDM patients: the essen-II study[J]. The American Journal of Medicine, 1997, 103(6): 483.
[5]? FORETZ M, HEBRARD S, LECLERC J, et al. Metformin inhibits hepatic gluconeogenesis in mice independently of the LKB1/AMPK pathway via a decrease in hepatic energy state[J]. The Journal of Clinical Investigation, 2010, 120(7): 2355.
[6]? SARABIA V, LAM L, BURDETT E, et al. Glucose transport in human skeletal muscle cells in culture. Stimulation by insulin and metformin[J]. The Journal of Clinical Investigation, 1992, 90(4): 1386.
[7]? ZHOU G, MYERS R, LI Y, et al. Role of AMP-activated protein kinase in mechanism of metformin action[J]. The Journal of Clinical Investigation, 2001, 108(8): 1167.
[8]? LUPI R, DEL G S, TELLINI C, et al. The biguanide compound metformin prevents desensitization of human pancreatic islets induced by high glucose[J]. European Journal of Pharmacology, 1999, 364(2-3): 205.
[9]? MASINI M, ANELLO M, BUGLIANI M, et al. Prevention by metformin of alterations induced by chronic exposure to high glucose in human islet beta cells is associated with preserved ATP/ADP ratio[J]. Diabetes Research and Clinical Practice, 2014, 104(1): 163.
[10]? CHO Y M, KIEFFER T J. New aspects of an old drug: metformin as a glucagon-like peptide 1 (GLP-1) enhancer and sensitiser[J]. Diabetologia, 2011, 54(2): 219.
[11]? MADIRAJU A K, ERION D M, RAHIMI Y, et al. Metformin suppresses gluconeogenesis by inhibiting mitochondrial glycerophosphate dehydrogenase[J]. Nature, 2014, 510(7506): 542.
[12]? HE L, SABET A, DJEDJOS S, et al. Metformin and insulin suppress hepatic gluconeogenesis through phosphorylation of CREB binding protein[J]. Cell, 2009, 137(4): 635.
[13]? DUCA F A, COTE C D, RASMUSSEN B A, et al. Metformin activates a duodenal ampk-dependent pathway to lower hepatic glucose production in rats[J]. Nature Medicine, 2015, 21(5): 506.
[14]? HANSEN M, PALSOE M K, HELGE J W, et al. The effect of metformin on glucose homeostasis during moderate exercise[J]. Diabetes Care, 2015, 38(2): 293.
[15]? MALIN S K, BRAUN B. Impact of metformin on exercise-induced metabolic adaptations to lower type 2 diabetes risk[J]. Exercise and Sport Sciences Reviews, 2016, 44(1): 4.
[16]? BOULE N G, ROBERT C, BELL G J, et al. Metformin and exercise in type 2 diabetes: examining treatment modality interactions[J]. Diabetes Care, 2011, 34(7): 1469.
[17]? MYETTE-COTE E, TERADA T, BOULE N G. The effect of exercise with or without metformin on glucose profiles in type 2 diabetes: a pilot study[J]. Canadian Journal of Diabetes, 2016, 40(2): 173.
[18]? 陳致瑜,潘潤桑,羅振華,等.二甲雙胍改善自發性2型糖尿病KKAy小鼠胰島β細胞功能機制初探[J].貴州醫科大學學報,2017,42(9):1016.
[19]? 徐麗,李冬梅,孫慧萍,等.黃連素合用二甲雙胍對糖尿病小鼠血糖的影響[J].實用藥物與臨床,2014,17(7):822.
[20]? LINDEN M A, FLETCHER J A, MORRIS E M, et al. Combining metformin and aerobic exercise training in the treatment of type 2 diabetes and NAFLD in OLETF rats[J]. American Journal of Physiology(Endocrinology and metabolism), 2014, 306(3): 300.
[21]? LONG D E, PECK B D, MARTZ J L, et al. Metformin to augment strength training effective response in seniors (masters): study protocol for a randomized controlled trial[J]. Trials, 2017, 18(1): 192.
[22]? GARNETT S P, GOW M, HO M, et al. Improved insulin sensitivity and body composition, irrespective of macronutrient intake, after a 12 month intervention in adolescents with pre-diabetes; resist a randomised control trial[J]. BMC Pediatrics, 2014(14): 289.
[23]? CHIEN K Y, HUANG C C, HSU K F, et al. Swim training reduces metformin levels in fructose-induced insulin resistant rats[J]. Journal of Pharmacy and Pharmaceutical Sciences, 2012, 15(1): 85.
[24]? CATON P W, KIESWICH J, YAQOOB M M, et al. Metformin opposes impaired AMPK and SIRT1 function and deleterious changes in core clock protein expression in white adipose tissue of genetically-obese db/db mice[J]. Diabetes, Obesity & Metabolism, 2011, 13(12): 1097.
[25]? ZULIAN A, CANCELLO R, GIROLA A, et al. In vitro and in vivo effects of metformin on human adipose tissue adiponectin[J]. Obesity Facts, 2011, 4(1): 27.
[26]? SMITH A C, MULLEN K L, JUNKIN K A, et al. Metformin and exercise reduce muscle FAT/CD36 and lipid accumulation and blunt the progression of high-fat diet-induced hyperglycemia[J]. American Journal of Physiology(Endocrinology and Metabolism), 2007, 293(1): 172.
[27]? HUANG L, YUE P, WU X, et al. Combined intervention of swimming plus metformin ameliorates the insulin resistance and impaired lipid metabolism in murine gestational diabetes mellitus[J]. Plos One, 2018, 13(4): 195609.
[28]? YI X, CAO S, CHANG B, et al. Effects of acute exercise and chronic exercise on the liver leptin-AMPK-ACC signaling pathway in rats with type 2 diabetes[J]. Journal of Diabetes Research, 2013(12): 946432.
[29]? LAVOIE C, DUCROS F, BOURQUE J, et al. Glucose metabolism during exercise in man: the role of insulin and glucagon in the regulation of hepatic glucose production and gluconeogenesis[J]. Canadian Journal of Physiology Pharmacology, 1997, 75(1): 26.
[30]? TANG T, REED M J. Exercise adds to metformin and acarbose efficacy in db/db mice[J]. Metabolism, 2001, 50(9): 1049.
[31]? BICER M, AKIL M, AVUNDUK M C, et al. Interactive effects of melatonin, exercise and diabetes on liver glycogen levels[J]. Endokrynologia Polska, 2011, 62(3): 252.
[32]? DE CARVALHO A K, DA S S, SERAFINI E, et al. Prior exercise training prevent hyperglycemia in STZ mice by increasing hepatic glycogen and mitochondrial function on skeletal muscle[J]. Journal of Cellular Biochemistry, 2017, 118(4): 678.
[33]? MOTIANI K K, SAVOLAINEN A M, ESKELINEN J J, et al. Two weeks of moderate-intensity continuous training, but not high-intensity interval training, increases insulin-stimulated intestinal glucose uptake[J]. Journal of Applied Physiology (1985), 2017, 122(5): 1188.
[34]? KREBS H A, GASCOYNE T. The redox state of the nicotinamide-adenine dinucleotides in rat liver homogenates[J]. The Biochemical Journal, 1968, 108(4): 513.
[35]? SISTARE F D, HAYNES R J. The interaction between the cytosolic pyridine nucleotide redox potential and gluconeogenesis from lactate/pyruvate in isolated rat hepatocytes. Implications for investigations of hormone action[J]. The Journal of Biological Chemistry, 1985, 260(23): 12748.
[36]? SUGANO T, SHIOTA M, TANAKA T, et al. Intracellular redox state and stimulation of gluconeogenesis by glucagon and norepinephrine in the perfused rat liver[J]. Journal of Biochemistry, 1980, 87(1): 153.
[37]? LEWIS A J, MILLER J J, MCCALLUM C, et al. Assessment of metformin-induced changes in cardiac and hepatic redox state using hyperpolarized [1-13C] pyruvate[J]. Diabetes, 2016, 65(12): 3544.
[38]? RADZIUK J, ZHANG Z, WIERNSPERGER N, et al. Effects of metformin on lactate uptake and gluconeogenesis in the perfused rat liver[J]. Diabetes, 1997, 46(9): 1406.
[39]? WATSON J D. Type 2 diabetes as a redox disease[J]. Lancet, 2014, 383(9919): 841.
[40]? SOUZA P L, ROPELLE E C, DE SOUZA C T, et al. Exercise training decreases mitogen-activated protein kinase phosphatase-3 expression and suppresses hepatic gluconeogenesis in obese mice[J]. The Journal of Physiology, 2014, 592(6): 1325.
[41]? KNOWLER W C, BARRETT-CONNOR E, FOWLER S E, et al. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin[J]. The New England Journal of Medicine, 2002, 346(6): 393.
[42]? FLOREZ H, PAN Q, ACKERMANN R T, et al. Impact of lifestyle intervention and metformin on health-related quality of life: the diabetes prevention program randomized trial[J]. Journal of General Internal Medicine, 2012, 27(12): 1594.
[43]? WIERNSPERGER N F. Membrane physiology as a basis for the cellular effects of metformin in insulin resistance and diabetes[J]. Diabetes & Metabolism, 1999, 25(2): 110.
[44]? PETERSEN K F, PRICE T B, BERGERON R. Regulation of net hepatic glycogenolysis and gluconeogenesis during exercise: impact of type 1 diabetes[J]. The Journal of Clinical Endocrinology and Metabolism, 2004, 89(9): 4656.
[45]? KOYAMA Y, GALASSETTI P, COKER R H, et al. Prior exercise and the response to insulin-induced hypoglycemia in the dog[J]. American Journal of Physiology(Endocrinology and Metabolism), 2002, 282(5): 1128.
[46]? SHAROFF C G, HAGOBIAN T A, MALIN S K, et al. Combining short-term metformin treatment and one bout of exercise does not increase insulin action in insulin-resistant individuals[J]. American Journal of Physiology(Endocrinology and Metabolism), 2010, 298(4): 815.
[47]? MALIN S K, GERBER R, CHIPKIN S R, et al. Independent and combined effects of exercise training and metformin on insulin sensitivity in individuals with prediabetes[J]. Diabetes Care, 2012, 35(1): 131.
[48]? NARKAR V A, DOWNES M, YU R T, et al. AMPK and PPAR delta agonists are exercise mimetics[J]. Cell, 2008, 134(3): 405.
[49]? KRISTENSEN J M, TREEBAK J T, SCHJERLING P, et al. Two weeks of metformin treatment induces AMPK-dependent enhancement of insulin-stimulated glucose uptake in mouse soleus muscle[J]. American Journal of Physiology(Endocrinology and Metabolism), 2014, 306(10): 1099.
[50]? BANG S, CHEN Y, AHIMA R S, et al. Convergence of IPMK and LKB1-AMPK signaling pathways on metformin action[J]. Molecular Endocrinology, 2014, 28(7): 1186.
[51]? MOOTHA V K, LINDGREN C M, ERIKSSON K F, et al. PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes[J]. Nature Genetics, 2003, 34(3): 267.
[52]? MORINO K, PETERSEN K F, DUFOUR S, et al. Reduced mitochondrial density and increased IRS-1 serine phosphorylation in muscle of insulin-resistant offspring of type 2 diabetic parents[J]. The Journal of Clinical Investigation, 2005, 115(12): 3587.
[53]? PATTI M E, BUTTE A J, CRUNKHORN S, et al. Coordinated reduction of genes of oxidative metabolism in humans with insulin resistance and diabetes: potential role of PGC1 and NRF1[J]. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(14): 8466.
[54]? RITOV V B, MENSHIKOVA E V, HE J, et al. Deficiency of subsarcolemmal mitochondria in obesity and type 2 diabetes[J]. Diabetes, 2005, 54(1): 8.
[55]? HERZIG S, LONG F, JHALA U S, et al. CREB regulates hepatic gluconeogenesis through the coactivator PGC-1[J]. Nature, 2001, 413(6852): 179.
[56]? LEE J M, SEO W Y, SONG K H, et al. AMPK-dependent repression of hepatic gluconeogenesis via disruption of CREB.CRTC2 complex by orphan nuclear receptor small heterodimer partner[J]. The Journal of Biological Chemistry, 2010, 285(42): 32182.
[57]? HE L, MENG S, GERMAIN-LEE E L, et al. Potential biomarker of metformin action[J]. The Journal of Endocrinology, 2014, 221(3): 363.
[58]? HE L, NAIK K, MENG S, et al. Transcriptional co-activator p300 maintains basal hepatic gluconeogenesis[J]. The Journal of Biological Chemistry, 2012, 287(38): 32069.
[59]? DILLON L M, REBELO A P, MORAES C T. The role of PGC-1 coactivators in aging skeletal muscle and heart[J]. IUBMB Life, 2012, 64(3): 231.
[60]? SCARPULLA R C, VEGA R B, KELLY D P. Transcriptional integration of mitochondrial biogenesis[J]. Trends in Endocrinology and Metabolism: TEM, 2012, 23(9): 459.
[61]? LARSSON N G, WANG J, WILHELMSSON H, et al. Mitochondrial transcription factor a is necessary for mtDNA maintenance and embryogenesis in mice[J]. Nature Genetics, 1998, 18(3): 231.
[62]? WENZ T, ROSSI S G, ROTUNDO R L, et al. Increased muscle PGC-1alpha expression protects from sarcopenia and metabolic disease during aging[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(48): 20405.
[63]? MOOTHA V K, LINDGREN C M, ERIKSSON K F, et al. PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes[J]. Nature Genetics, 2003, 34(3): 267.
[64]? RUSSELL A P. PGC-1alpha and exercise: important partners in combating insulin resistance[J]. Current Diabetes Reviews, 2005, 1(2): 175.
[65]? URUNO A, YAGISHITA Y, YAMAMOTO M. The keap1-Nrf2 system and diabetes mellitus[J]. Archives of Biochemistry and Biophysics, 2015(566): 76.
[66]? TSCHOP M H, STUMVOLL M, RISTOW M. Opposing effects of antidiabetic interventions on malignant growth and metastasis[J]. Cell Metabolism, 2016, 23(6): 959.
[67]? WANG H, LIU X, LONG M, et al. NRF2 activation by antioxidant antidiabetic agents accelerates tumor metastasis[J]. Science Translational Medicine, 2016, 8(334): 334.
[68]? RAO V A, KLEIN S R, BONAR S J, et al. The antioxidant transcription factor Nrf2 negatively regulates autophagy and growth arrest induced by the anticancer redox agent mitoquinone[J]. The Journal of Biological Chemistry, 2010, 285(45): 34447.