白晶 朱秋勁 徐世濤 劉春麗 陳玉芹 楊睿穎 龍久鈴



摘 要:微生物是影響食品品質及安全的重要因素,微生物污染不僅會造成食品品質下降,還可能引發食源性疾病,影響消費者的身體健康。聚焦食品安全,建立食品安全監控體系,采取有效減菌措施尤為重要。本文總結乳酸、微酸性電解水、低溫等離子體3 種綠色減菌技術在食品中的應用進展,對其在肉蛋、果蔬、糧油等方面的應用研究進行綜合闡述,歸納其優缺點,為有效減少微生物污染、把關食品品質、解決食品生產中的質量問題提供一定的理論指導。
關鍵詞:乳酸;微酸性電解水;低溫等離子體;微生物;減菌
Abstract: Microorganisms are an important factor affecting food quality and safety. Microbial contamination can not only result in a decline in food quality, but also cause foodborne diseases affecting consumers health. Therefore, it is of particular importance to focus on food safety, establish a food safety monitoring system, and take effective measures to reduce bacterial contaminants. This article summarizes the current status of the application of three green bacterial decontamination technologies, namely using lactic acid, slightly acidic electrolyzed water and cold plasma in foods, such as meat, eggs, fruits, vegetables, grains and oil. The advantages and disadvantages of these technologies are pointed out. This review provides a theoretical guidance for effectively reducing microbial contamination, ensuring food quality and solving quality problems associated with food production.
Keywords: lactic acid; slightly acidic electrolytic water; cold plasma; microorganism; bacterial contamination
DOI:10.7506/rlyj1001-8123-20191021-246
中圖分類號:TS201.3? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 文獻標志碼:A 文章編號:1001-8123(2019)12-0061-08
食品為人類提供了豐富的維生素、蛋白質、脂類及抗氧化類物質來維持人類的生存,但食品原材料在食品加工、運輸、銷售等過程中易受到微生物的污染,導致食品品質降低,造成經濟損失。食源性致病菌會引起不良反應,嚴重的會造成食物中毒。因此,去除食品中的有害污染菌至關重要。在傳統的殺菌技術中,熱處理、化學試劑滅菌法會影響食品的氧化速率、蛋白質結構、原有風味等品質,殘留的滅菌劑還會對人體造成危害;紫外殺菌由于殺菌作用機理會產生光復活現象,此外處理不當會對人的皮膚和眼睛造成危害;臭氧殺菌技術中,由于臭氧分子極不穩定,易分解,殺菌效果受限;超高壓技術因設備要求高,在實際生產中的應用受到一定程度的限制[1-3]。而與傳統方式相比,綠色、健康、無殘留且高效的滅菌技術是必然的發展趨勢,將會被不斷地應用于食品實際生產中[1]。結合柵欄效應,巧妙運用和控制不同的柵欄因子,如高溫、低溫、降低pH值、添加防腐劑等,科學合理地將不同技術運用于食品加工生產中,發揮其協同作用,能夠為綜合調控和改善食品質量提供有效途徑。
乳酸沖淋技術作為一種天然、安全、無污染的減菌技術,通過單一使用和結合其他技術協同使用,應用于食品加工中[4-8];微酸性電解水(slightly acidic electrolyzed water,SAEW)作為一種綠色、非熱加工殺菌劑在醫學和食品中有廣泛應用[9-12];低溫等離子體(cold plasma,CP)作為物質存在的第4種狀態,克服了蒸汽、化學試劑等滅菌方法的不足,成為新一代的滅菌技術[13]。上述3 種減菌措施都是非熱殺菌技術,處理后的殘留物不會對人體產生危害,且在控制食品中微生物數量的同時保持了食品的新鮮度和營養成分,可在一定程度上避免因物理產熱對食品品質造成的影響。目前,關于3 種減菌技術均有一定的報道,但是在實際生產中的應用并不是很廣泛,本文介紹上述3 種綠色減菌技術在食品中的應用,并對其未來發展方向進行展望。
1 乳酸減菌技術
乳酸作為一種有機酸被公認為是天然、無毒的食品級抗菌劑。與其他化學試劑相比,乳酸可通過降低原料肉的pH值抑制微生物的生長[14];其代謝過程中產生的酸、過氧化氫、二氧化碳和細菌素能夠抑制腐敗菌生長,如乳酸鏈球菌素可吸附于細菌細胞膜上,破壞其完整性并使細胞中的內含物外泄,對菌體造成不可恢復的損害[15-16],乳酸可參與人體新陳代謝且不會對人體產生危害。乳酸在食品加工中的應用已被廣泛報道。
1.1 乳酸減菌技術在畜、禽、蛋中的應用
乳酸作為一種安全的抗菌劑,在食品中的應用較為廣泛。乳酸噴淋的應用主要是單獨使用或與其他有機酸、熱水、脈沖強光、靜電噴霧等方式結合使用。Ba等[5]將2%和4%的乳酸溶液應用在豬胴體加工過程中,結果表明,4%的乳酸噴淋效果更好。Youssef等[17]用5 g/L的乳酸溶液噴淋處理樣品,發現乳酸溶液可有效減少大腸桿菌,這種方法對于污染較輕的樣品減菌效果較好,對于嚴重污染樣品的減菌效果需要進一步驗證。夏小龍等[18]用熱水結合乳酸噴淋的方法對屠宰鏈中的肉雞胴體進行處理,1.5 g/L乳酸、50 ℃熱水、噴淋時間為15 s,可延長肉雞胴體的貨架期。
Li Zhuoyang等[7]發現,在雞蛋表面噴灑2%的乳酸溶液可顯著降低沙門氏菌的數量,但乳酸噴淋處理后,細菌在常溫條件下容易滲入到雞蛋中,低溫貯藏能夠形成第2道屏障,降低甚至是抑制微生物污染。
1.2 乳酸減菌技術在果蔬中的應用
乳酸溶液對鮮切果蔬及采摘前果蔬具有一定的抑菌、抗氧化作用。Kwon等[6]將飽和蒸汽和過飽和蒸汽與2%乳酸溶液結合對哈密瓜進行處理,通過感官評價比較可得,2%乳酸溶液與過飽和蒸汽結合處理不會影響哈密瓜品質。Laury-Shaw等[19]將乳酸與靜電噴霧相結合對綠葉植物進行噴灑,發現該方法對大腸桿菌的抑制作用優于單一的乳酸噴灑方法,將其應用于農業方面可提高農產品的安全性。
1.3 乳酸減菌技術在其他方面的應用
乳酸與熱水相結合被認為是一種能有效降低生產過程中由于人工操作、刀具接觸和內臟污染引起胴體污染的方法,針對這一措施研究者通過不同的指標研究其對微生物的抑制效果。Smulders等[20]采用等體積乳酸、乙酸配制成混合溶液,用微生物數量和感官評價研究冷-熱有機酸噴霧和亞大氣壓蒸汽冷凝對豬胴體表面接種微生物的影響,發現微生物數量低于最低檢測限2 (lg(CFU/cm2))。Wakinaka等[21]利用含有天冬氨酸脫羧酶的嗜鹽乳酸菌作為魚露發酵劑,可防止產品中生物胺的積累;此外,通過分離乳酸菌菌株獲得一種適宜的抗李斯特菌生物保護物,為海產品保鮮提供了新的方法[22]。Kalchayanand等[23]用樣品表面pH值作為參數驗證乳酸噴淋處理對新鮮牛肉中大腸桿菌O157:H7和沙門氏菌的抑制效果,建立乳酸噴淋溫度、乳酸噴淋時新鮮牛肉表面pH值與大腸桿菌O157:H7及沙門氏菌數量之間的線性關系,結果表明,可將新鮮牛肉表面pH值作為目標病原菌減少的參照依據。
乳酸對去除食品表面微生物有一定的效果,然而實際應用中的乳酸濃度還沒有標準,確定乳酸的使用濃度對于食品產業化生產尤為重要,可在有效的濃度范圍內達到最大的經濟價值;乳酸的單一使用效果不是十分理想,與其他方法結合使用時,在最佳的乳酸濃度范圍內可以保障鮮肉顏色的穩定性[24]。乳酸對相同食品的不同部位、不同處理時間的減菌效果不同,且對特征污染菌的減菌效果不同[5],但乳酸減菌技術應用簡單,不需要復雜的儀器設備,應用領域廣泛,進行“精準化”殺菌將是未來研究的主要方向。
乳酸減菌在食品中的部分應用如表1所示。
2 SAEW技術
電解水是一種基于電化學的環保技術,已成為化學消毒劑的常用替代品,目前電解水主要應用于食品生產企業生產環境、設備及產品的消毒[26]。SAEW是將稀鹽酸或稀鹽溶液在電解裝置中電解、pH 5.0~6.5、有效氯質量濃度10~30 mg/L的電解水。電解稀鹽酸時會產生次氯酸,由于次氯酸為小分子且不帶電荷,不僅可以作用于細胞壁還可以滲入到細菌體內,通過破壞外膜并使質膜中的蛋白質失活,導致細胞壁和細胞膜破裂,抑制酶的作用、破壞細胞代謝過程,滲透到細胞中并破壞細胞內的微生物細胞壁和細胞器,導致細菌死亡[27]。作為一種新興的環保技術,SAEW殺菌效果穩定、無殘留、殺菌效果好、物理化學性質穩定,在食品領域應用廣泛[26,28-30]。
2.1 SAWE在蛋、肉及肉制品中的應用
SAEW具有殺菌效能良好、對人畜無刺激性、無毒副作用的特性。有學者利用SAEW對完整雞蛋表面進行減菌處理[28,31],結合紫外照射對雞翅進行預冷前處理[10]。雞肉、雞蛋本身及在加工過程中由于操作、環境、貯藏等過程會受到一定的污染,經過SAEW處理后發現,食源性致病菌數量明顯減少[10,31]。使用有效氯質量濃度為70 mg/L的SAEW沖淋鴨肉5 min可以顯著減少鴨肉表面單核李斯特菌的生物膜,降低食源性疾病爆發的風險[11]。Sheng Xiaowei等[4]研究表明,在4 ℃條件下,SAEW可以使牛肉貨架期達到14~16 d,明顯優于空白對照組在相同條件下的6~8 d,同時指出SAEW在抗氧化方面作用一般。以噴霧的方式用SAEW對冷凍凡納濱對蝦進行保鮮,或將新鮮的魷魚放置于SAEW冰上進行保鮮處理,均發現SAEW能夠在一定程度上抑制微生物的生長及海鮮的氧化速率[32-33]。SAEW為降低海產品的微生物數量和延長保鮮期提供了新的思路。
2.2 SAEW在果蔬、糧食中的應用
SAEW的應用不僅局限于對設備和原料進行消毒,從而延長畜禽蛋的保質期,近年來,隨著研究者的不斷探索,SAEW在果蔬、糧食方面的應用得到不斷發展。Li Zhen等[34]使用不同有效氯濃度的SAEW浸泡花椰菜種子,探討SAEW對花椰菜生物活性化合物和萌芽形態的影響。糙米加工后成為消費者喜愛的食物,但在浸泡過程中極易遭到微生物污染,SAEW浸泡處理可以減少微生物數量且可以提升糙米品質[35]。Tango等[36]將SAEW與氧化鈣(CaO)、延胡索酸及超聲波處理用于減少蘋果、西紅柿表面接種的大腸桿菌O157:H7和單核細胞增生李斯特菌數量。褐變是水果和蔬菜的常見問題之一,不僅會影響產品的銷售價值也會影響其營養價值。
Li Huiying等[37]將鮮切后的蓮藕浸泡在SAEW中,發現能抑制蓮藕褐變的發生,但對多酚氧化酶的抑制機理仍需要進一步研究。
2.3 SAWE在其他方面的應用
SAEW作為一種新型的非熱加工減菌措施,研究人員應用其提高食品經濟價值,保持食品的營養品質和感官品質,并探索其對食品成分產生的影響。西蘭花芽的植物化學研究表明,使用不同的誘導子時,會使健康植物化學物質的數量變化顯著,SAEW被用作激發劑以增加生物活性化合物的含量[38]。使用基于高分辨率質譜數據的無標記定量蛋白質組學方法研究高壓處理和SAEW滅活蠟狀芽孢桿菌孢子的機制,結果表明,高壓處理和SAEW結合可使孢子的代謝、降解、信號傳導和生物合成途徑受到影響,最終使其被滅活,Spo0A轉錄因子的磷酸化是由ATP結合盒轉運蛋白(ATP-binding cassette transporter,ABC)中的ATP結合蛋白的下調介導,與孢子的失活有關[39]。
SAEW因具有成本低廉、綠色安全、殺菌效率高等優點,近幾年關于其改善食品品質的報道越來越多,但SAEW對食品的影響機制尚不明確,在實際生產中的應用較少。SAEW在食品中的部分應用如表2所示。
3 CP技術
等離子體是一種特殊的物質存在形式,是固、液、氣以外物質存在的第4種狀態,1928年首次使用“等離子體”一詞來定義這種部分或全部電離的氣體和在電離態下發現的等離子體振蕩的第4種物質狀態[51]。CP是在較低的壓力和環境溫度下,通過介質阻擋放電、射頻放電、滑動弧放電或電暈放電等作用產生的,含有大量不同的物質,包括電子、離子、紫外光子及自由基等,如活性氧(reactive oxygen species,ROS)和活性氮[52]。目前,CP的抑菌機制主要有紫外光輻射誘導DNA損傷、CP產生的羥自由基引起膜蛋白發生化學修飾和降解、ROS通過與脂質相互作用改變生物膜結構,破壞細胞外膜,細胞質溢出導致細胞死亡[53]。作為一種新興的非熱加工技術,CP具有無殘留、無熱處理、時間短、效率高等特點,被廣泛應用于食品、醫學、環境工程等學科,克服了蒸汽、化學等現行消毒方法的不足,成為新一代的滅菌技術。
3.1 CP技術在肉及肉制品中的應用
肉及肉制品是人日常生活中主要的蛋白質來源,微生物不僅會造成食品腐敗變質,使其品質降低且一些微生物產生的外毒素會引起食物中毒。為保證食品的經濟價值和營養價值,CP作為一種高效、綠色的滅菌方法受到越來越多的學者重視。Misra等[54]將CP技術凈化肉和肉制品的相關研究進行歸納,總結了CP中的ROS通過破壞DNA、蛋白質、細胞中的酶等造成細胞失活以及在強電場作用下,細菌細胞膜由于電荷的靜電力作用破裂而死亡等相關機制。Ulbin-Figlewicz等[55]探討CP處理對肉表面微生物活性的影響及其對肉顏色和pH值的影響,樣品在真空室中暴露5、10 min,用平板法測定微生物總數、嗜冷菌數、酵母菌數和霉菌數,結果表明,微生物數量明顯減少。Yadav等[56]對影響CP效果的內外因素進行研究發現,CP處理后肉樣中的丙二醛含量顯著增加,含水量顯著降低,而水分活動無顯著變化,這一結果對未來研究肉類產品干燥、氧化及風味的改變有一定的參考價值。冷鏈技術的應用正在蓬勃發展,但在運輸過程中不可避免會產生溫度波動。Zhang Yuxiang等[57]研究CP對商業魚丸中微生物的殺菌作用,為控制商業魚丸運輸過程中的品質變化提供了新思路,為確保冷鏈食品安全提供了新方法。有學者研究CP技術對凡納濱對蝦[58]、鯖魚[59]、鮭魚[60]的影響,發現該技術在一定程度上可以改善原料品質。隨著肉雞消費量的持續攀升,肉雞屠宰過程中的污染成為首要問題[18]。Gavahian等[61]討論CP在家禽加工中帶來的經濟效益、質量屬性及其局限性,指出監管機構對產品和工藝的安全性驗證是食品工業預期應用的一個關鍵考慮因素,將CP和其他技術聯合使用是未來的發展趨勢。
3.2 CP技術在果蔬、糧食中的應用
果蔬、糧食是人們日常生活中維生素、酚類、花青素和抗氧化物的主要來源,傳統的加工方式往往會造成營養物質的損失或破壞。Thirumdas等[13]研究CP在巴斯馬蒂米粉中的應用及對其凝膠水化性能、面粉水化性能、糊化溫度和抗氧化性能等的影響,X-射線衍射、差示掃描量熱法處理發現CP對米粉的結構沒有影響,米粉總多酚含量和還原力增加,CP處理能夠改善巴斯馬蒂米粉的功能特性。Misra等[62]用CP對硬性和軟性小麥粉進行處理,結果表明,CP可以調節小麥粉的彈性和黏性。Hou Yanan等[63]發現利用CP與加熱提取法對藍莓汁進行處理可顯著提高對芽孢桿菌的滅活率,并對花青素、總酚、VC含量和抗氧化活性有積極影響。用CP對蘋果處理40 s,再進行乳酸鏈球菌素型抗菌消毒劑處理180、3 600 s,可分別導致單核細胞增生李斯特菌數量減少2.5、4.6 (lg(CFU/g))[64]。此外,CP預處理具有提高辣椒干燥速率并優化干辣椒品質的特性[65],但CP技術存在殺菌作用不均勻的現象[66]。
CP在食品行業的應用仍處于初探階段,目前市場上的設備較為昂貴,對于食品企業來說投資成本較大。關于CP作用于食品品質屬性的機制及精準調控、設備研發有待深入研究。CP在食品中的部分應用如表3所示。
4 結 語
本文綜述乳酸噴淋、SAEW及CP 3 種綠色減菌技術在食品中的應用研究進展及優缺點,相比傳統減菌方式,上述3 種方式更有利于高效、快速、無殘留地去除食品中的有害菌,提高食品的安全性。但單一減菌技術仍然存在一些不足之處:如乳酸減菌技術成本低、易操作,但處理不當時會使原料的感官品質遭到破壞,營養價值降低;SAEW的殺菌效率能夠達到90%以上,且制作簡單,但其對食品品質影響的機制仍需進一步研究;CP技術避免了處理過程產熱對食品品質的影響,但殺菌作用不均勻且設備投資成本較高。
[10] CICHOSKI A J, MARTINS FLORES D R, DE MENEZES C R, et al.?Ultrasound and slightly acid electrolyzed water application: an efficient combination to reduce the bacterial counts of chicken breast during pre-chilling[J]. International Journal of Food Microbiology, 2019, 301: 27-33. DOI:10.1016/j.ijfoodmicro.2019.05.004.
[11] JEON H R, KWON M J, YOON K S. Control of Listeria innocua biofilms on food contact surfaces with slightly acidic electrolyzed water and the risk of biofilm cells transfer to duck meat[J]. Journal of Food Protection, 2018, 81(4): 582-592. DOI:10.4315/0362-028X.JFP-17-373.
[12] WANG Huhu, QI Jun, DUAN Debao, et al. Combination of a novel designed spray cabinet and electrolyzed water to reduce microorganisms on chicken carcasses[J]. Food Control, 2018, 86: 200-206.?DOI:10.1016/j.foodcont.2017.11.027.
[13] THIRUMDAS R, DESHMUKH R R, ANNAPURE U S. Effect of low temperature plasma on the functional properties of basmati rice flour[J]. Journal of Food Science and Technology-Mysore, 2016, 53(6): 2742-2751. DOI:10.1007/s13197-016-2246-4.
[14] TRZASKA W J, CORREIA J N, VILLEGAS M T, et al. pH manipulation as a novel strategy for treating mucormycosis[J]. Antimicrobial Agents and Chemotherapy, 2015, 59(11): 6968-6974. DOI:10.1128/AAC.01366-15.
[15] 汪陳潔. 乳酸對常見食源性致病菌的抗菌活性與作用機理[D]. 武漢: 華中農業大學, 2014: 12-17.
[16] 彭書東, 李鍵, 劉士健, 等. 乳酸菌細菌素生物合成機制、抑菌機制及應用研究進展 [J]. 食品與發酵工業, 2019, 45(6): 236-242. DOI:10.13995/j.cnki.11-1802/ts.018742.
[17] YOUSSEF M K, YANG X, BADONI M, et al. Effects of spray volume, type of surface tissue and inoculum level on the survival of Escherichia coli on beef sprayed with 5% lactic acid[J]. Food Control, 2012, 25(2): 717-722. DOI:10.1016/j.foodcont.2011.12.021.
[18] 夏小龍, 彭珍, 劉書亮, 等. 熱水結合乳酸噴淋處理對屠宰生產鏈中肉雞胴體微生物、理化及感官指標的影響[J]. 食品工業科技, 2014, 35(24): 137-142. DOI:10.13386/j.issn1002-0306.2014.24.020.
[19] LAURY-SHAW A, GRAGG S E, ECHEVERRY A, et al. Survival of Escherichia coli O157:H7 after application of lactic acid bacteria[J]. Journal of the Science of Food and Agriculture, 2019, 99(4): 1548-1553. DOI:10.1002/jsfa.9332.
[20] SMULDERS F J, WELLM G, HIESBERGER J, et al. Microbiological and sensory effects of the combined application of hot-cold organic acid sprays and steam condensation at subatmospheric pressure for decontamination of inoculated pig tissue surfaces[J]. Journal of Food Protection, 2011, 74(8): 1338-1344. DOI:10.4315/0362-028X.JFP-10-472.
[21] WAKINAKA T, IWATA S, TAKEISHI Y, et al. Isolation of halophilic lactic acid bacteria possessing aspartate decarboxylase and application to fish sauce fermentation starter[J]. International Journal of Food Microbiology, 2019, 292: 137-143. DOI:10.1016/j.ijfoodmicro.2018.12.013.
[22] OZYURT G, OZOGUL Y, BOGA E K, et al. The effects of fermentation process with acid and lactic acid bacteria strains on the biogenic amine formation of wet and spray-dried fish silages of discards[J]. Journal of Aquatic Food Product Technology, 2019, 28(3): 314-328. DOI:10.1080/10498850.2019.1578314.
[23] KALCHAYANAND N, ARTHUR T M, BOSILEVAC J M, et al. Surface pH of fresh beef as a parameter to validate effectiveness of lactic acid treatment against Escherichia coli O157:H7 and Salmonella[J]. Journal of Food Protection, 2018, 81(7): 1126-1133. DOI:10.4315/0362-028X.JFP-17-469.
[24] STIVARIUS M R, POHLMAN F W, MCELYEA K S, et al. Effects of hot water and lactic acid treatment of beef trimmings prior to grinding on microbial, instrumental color and sensory properties of ground beef during display[J]. Meat Science, 2002, 60(4): 327-334. DOI:10.1016/S0309-1740(01)00127-9.
[25] MASSEY L M, HETTIARACHCHY N S, HORAX R, et al. Efficacy of organic acid electrostatic spray for decontaminating Salmonella on cantaloupe cubes and cherry tomatoes[J]. Journal Food Process Preservation, 2018, 42(10): e13748. DOI:10.1111/jfpp.13748.
[26] HRICOVA D, STEPHAN R, ZWEIFEL C. Electrolyzed water and its application in the food industry[J]. Journal of Food Protection, 2008, 71(9): 1934-1947. DOI:10.4315/0362-028X-71.9.1934.
[27] CHYER K, YEN-CON H, BRACKETT R E. Efficacy of electrolyzed oxidizing (EO) and chemically modified water on different types of foodborne pathogens[J]. International Journal of Food Microbiology, 2000, 61(2/3): 199-207. DOI:10.1016/s0168-1605(00)00405-0.
[28] FORGHANI F, PARK J H, OH D H. Effect of water hardness on the production and microbicidal efficacy of slightly acidic electrolyzed water[J]. Food Microbiology, 2015, 48: 28-34. DOI:10.1016/j.fm.2014.11.020.
[29] LIANG Duo, WANG Qingfa, ZHAO Dandan, et al. Systematic application of slightly acidic electrolyzed water (SAEW) for natural microbial reduction of buckwheat sprouts[J]. LWT-Food Science and Technology, 2019, 108: 14-20. DOI:10.1016/j.lwt.2019.03.021.
[30] WANG Huhu, DUAN Debao, WU Zhongyuan, et al. Primary concerns regarding the application of electrolyzed water in the meat industry[J]. Food Control, 2019, 95: 50-56. DOI:10.1016/j.foodcont.2018.07.049.
[31] BING Shan, ZANG Yitian, LI Yunjie, et al. The synergistic effects of slightly acidic electrolyzed water and UV-C light on the inactivation of Salmonella enteritidis on contaminated eggshells[J]. Poultry Science, 2019, 98(12): 6914-6920. DOI:10.3382/ps/pez454.
[32] YE Zhangying, QI Fangzhong, PEI Lei, et al. Using slightly acidic electrolyzed water for inactivation and preservation of ram frozen shrimp (Litopenaeus vannamei) in the fifle processing[J]. Applied Engineering in Agriculture, 2014, 30(6): 935-941. DOI:10.13031/aea.30.10657.
[33] XUAN Xiaoting, FAN Yifei, LING Jiangang, et al. Preservation of squid by slightly acidic electrolyzed water ice[J]. Food Control, 2017, 73: 1483-1439. DOI:10.1016/j.foodcont.2016.11.013.
[34] LI Zhen, HAO Jianxiong, SONG Shuhui, et al. Effect of slightly acidic electrolyzed water on bioactive compounds and morphology of broccoli sprouts[J]. Food Research International, 2018, 105: 102-109. DOI:10.1016/j.foodres.2017.10.052.
[35] ZHANG Chunling, XIA Xiaodong, LI Baoming, et al. Disinfection efficacy of electrolyzed oxidizing water on brown rice soaking and germination[J]. Food Control, 2018, 89: 38-45. DOI:10.1016/j.foodcont.2018.01.007.
[36] TANGO C N, KHAN I, KOUNKEU P F N, et al. Slightly acidic electrolyzed water combined with chemical and physical treatments to decontaminate bacteria on fresh fruits[J]. Food Microbiology, 2017, 67: 97-105. DOI:10.1016/j.fm.2017.06.007.
[37] LI Huiying, REN Yuanyuan, HAO Jianxiong, et al. Dual effects of acidic electrolyzed water treatments on the microbial reduction and control of enzymatic browning for fresh-cut lotus root[J]. Journal of Food Safety, 2017, 37(3): e12333. DOI:10.1111/jfs.12333.
[38] LI L, SONG S, NIRASAWA S, et al. Slightly acidic electrolyzed water treatment enhances the main bioactive phytochemicals content in broccoli sprouts via changing metabolism[J]. Journal of Agricultural and Food Chemistry, 2019, 67(2): 606-614. DOI:10.1021/acs.jafc.8b04958.
[39] WANG Liping, XIA Qiang, LI Yunfei. Label free-based proteomic analysis of proteins in Bacillus cereus spores regulated by high pressure processing and slightly acidic electrolyzed water treatment[J]. Food Control, 2018, 90: 392-400. DOI:10.1016/j.foodcont.2018.03.015.
[40] WANG Huhu, QI Jun, DUAN Debao, et al. Combination of a novel designed spray cabinet and electrolyzed water to reduce microorganisms on chicken carcasses[J]. Food Control, 2018, 86: 200-206.DOI:10.1016/j.foodcont.2017.11.027.
[41] RAHMAN S M E, PARK J, SONG K B, et al. Effects of slightly acidic low concentration electrolyzed water on microbiological, physicochemical, and sensory quality of fresh chicken breast meat[J]. Journal of Food Science, 2012, 77(1): 35-41. DOI:10.1111/j.1750-3841.2011.02454.x.
[42] MANSUR A R, TANGO C N, KIM G H, et al. Combined effects of slightly acidic electrolyzed water and fumaric acid on the reduction of foodborne pathogens and shelf life extension of fresh pork[J]. Food Control, 2015, 47: 277-284. DOI:10.1016/j.foodcont.2014.07.019.
[43] CHEN Jing, XU Bin, DENG Shanggui, et al. Effect of combined pretreatment with slightly acidic electrolyzed water and botanic biopreservative on quality and shelf life of bombay duck (Harpadon nehereus)[J]. Journal of Food Quality, 2016, 39(2): 116-125. DOI:10.1111/jfq.12182.
[44] JUNG S, KO B S, JANG H J, et al. Effects of slightly acidic electrolyzed water ice and grapefruit seed extract ice on shelf life of brown sole (Pleuronectes herzensteini)[J]. Food Science and Biotechnology, 2018, 27(1): 261-267. DOI:10.1007/s10068-017-0198-8.
[45] NI Li, CAO Wei, ZHEN Weichao, et al. Efficacy of slightly acidic electrolyzed water for reduction of foodborne pathogens and natural microfiora on shell eggs[J]. Food Science and Technology Research, 2014, 20(1): 93-100. DOI:10.3136/fstr.20.93.
[46] ZANG Yitian, BING Shan, LI Yunjie, et al. Efficacy of slightly acidic electrolyzed water on the microbial safety and shelf life of shelled eggs[J]. Poultry Science, 2019, 98(11): 5932-5939. DOI:10.3382/ps/pez373.
[47] ZHANG Chunling, LU Zhanhui, LI Yongyu, et al. Reduction of Escherichia coli O157:H7 and Salmonella enteritidis on mung bean seeds and sprouts by slightly acidic electrolyzed water[J]. Food Control, 2011, 22(5): 792-796. DOI:10.1016/j.foodcont.2010.11.018.
[48] LIU Rui, ZHANG Dongchen, HE Xiangli, et al. The relationship between antioxidant enzymes activity and mungbean sprouts growth during the germination of mungbean seeds treated by electrolyzed water[J]. Plant Growth Regulation, 2014, 74(1): 83-91. DOI:10.1007/s10725-014-9899-7.
[49] ZHANG Chunling, ZHANG Yuyu, ZHAO Zhiyi, et al. The application of slightly acidic electrolyzed water in pea sprout production to ensure food safety, biological and nutritional quality of the sprout[J]. Food Control, 2019, 104: 83-90. DOI:10.1007/s10725-014-9899-7.
[50] DING Tian, GE Zhi, SHI J, et al. Impact of slightly acidic electrolyzed water (SAEW) and ultrasound on microbial loads and quality of fresh fruits[J]. LWT-Food Science and Technology, 2015, 60(2): 1195-1199. DOI:10.1016/j.lwt.2014.09.012.
[51] REINHERZ E L, KUNG P C, GOLDSTEIN G, et al. Separation of functional subsets of human T cells by a monoclonal antibody[J]. Journal of Immunology, 2013, 190(11): 5346-5350. DOI:10.1073/pnas.76.8.4061.
[52] WIELOGORSKA E, AHMED Y, MENEELY J, et al. A holistic study to understand the detoxification of mycotoxins in maize and impact on its molecular integrity using cold atmospheric plasma treatment[J]. Food Chemistry, 2019, 301: 125281. DOI:10.1016/j.foodchem.2019.125281.
[53] 韓格, 陳倩, 孔保華. 低溫等離子體技術在肉品保藏及加工中的應用研究進展[J]. 食品科學, 2019, 40(3): 286-292. DOI:10.7506/spkx1002-6630-20180128-387.
[54] MISRA N N, JO C. Applications of cold plasma technology for microbiological safety in meat industry[J]. Trends in Food Science and Technology, 2017, 64: 74-86. DOI:10.1016/j.foodchem.2019.125281.
[55] ULBIN-FIGLEWICZ N, BRYCHCY E, JARMOLUK A. Effect of low-pressure cold plasma on surface microflora of meat and quality attributes[J]. Journal of Food Science and Technology-Mysore, 2015, 52(2): 1228-1232. DOI:10.1007/s13197-013-1108-6.
[56] YADAV B, SPINELLI A C, GOVINDAN B N, et al. Cold plasma treatment of ready-to-eat ham: influence of process conditions and storage on inactivation of Listeria innocua[J]. Food Research International, 2019, 123: 276-285. DOI:10.1016/j.foodres.2019.04.065.
[57] ZHANG Yuxiang, WEI Jianping, YUAN Yahong, et al. Bactericidal effect of cold plasma on microbiota of commercial fish balls[J]. Innovative Food Science and Emerging Technologies, 2019, 52:?394-405. DOI:10.1016/j.ifset.2019.01.019.
[58] EKEZIE F G C, CHENG G H, SUN D W. Effects of atmospheric pressure plasma jet on the conformation and physicochemical properties of myofibrillar proteins from king prawn (Litopenaeus vannamei)[J]. Food Chemistry, 2019, 276: 147-156. DOI:10.1016/j.foodchem.2018.09.113.
[59] CHEN Jing, WANG Shengzhe, CHEN Junyu, et al. Effect of cold plasma on maintaining the quality of chub mackerel (Scomber japonicus): biochemical and sensory attributes[J]. Journal of the Science of Food and Agriculture, 2019, 99(1): 39-46. DOI:10.1002/jsfa.9138.
[60] COLEJO S, ALVAREZ-ORDONEZ A, PRIETO M, et al. Evaluation of ultraviolet light (UV), non-thermal atmospheric plasma (NTAP) and their combination for the control of foodborne pathogens in smoked salmon and their effect on quality attributes[J]. Innovative Food Science and Emerging Technologies, 2018, 50: 84-93. DOI:10.1016/j.ifset.2018.10.002.
[61] GAVAHIAN M, CHU Y H, JO C. Prospective applications of cold plasma for processing poultry products: benefits, effects on quality attributes, and limitations[J]. Comprehensive Reviews in Food Science and Food Safety, 2019, 18(4): 1292-1309. DOI:10.1111/1541-4337.12460.
[62] MISRA N N, KAUR S, TIWARI B K, et al. Atmospheric pressure cold plasma (ACP) treatment of wheat flour[J]. Food Hydrocolloids, 2015, 44: 115-121. DOI:10.1016/j.foodhyd.2014.08.019.
[63] HOU Yanan, WANG Ruixue, GAN Zhilin, et al. Effect of cold plasma on blueberry juice quality[J]. Food Chemistry, 2019, 290: 79-86. DOI:10.1016/j.foodchem.2019.03.123.
[64] UKUKU D O, NIEMIRA B A, UKANALIS J. Nisin-based antimircobial combination with cold plasma treatment inactivate Listeria monocytogenes on Granny Smith apples[J]. LWT-Food Science and Technology, 2019, 104: 120-127. DOI:10.1016/j.lwt.2018.12.049.
[65] ZHANG Xiaolin, ZHONG Chongshan, MUJUMDAR A S, et al. Cold plasma pretreatment enhances drying kinetics and quality attributes of chili pepper (Capsicum annuum L.) [J]. Journal of Food Engineering, 2019, 241: 51-57. DOI:10.1016/j.jfoodeng.2018.08.002.
[66] 郭儉. 低溫等離子體殺菌機理與活性水殺菌作用研究[D]. 杭州: 浙江大學, 2016: 55-68.
[67] ULBIN-FIGLEWICZ N, JARMOLUK A, MARYCZ K. Antimicrobial activity of low-pressure plasma treatment against selected foodborne bacteria and meat microbiota[J]. Annals of Microbiology, 2015, 65(3): 1537-1546. DOI:10.1007/s13213-014-0992-y.
[68] CHAPLOT S, YADAV B, JEON B, et al. Atmospheric cold plasma and peracetic acid-based hurdle intervention to reduce Salmonella on raw poultry meat[J]. Journal of Food Protection, 2019, 82(5): 878-888. DOI:10.4315/0362-028X.JFP-18-377.
[69] ROH S H, LEE S Y, PARK H H, et al. Effects of the treatment parameters on the efficacy of the inactivation of Salmonella contaminating boiled chicken breast by in-package atmospheric cold plasma treatment[J]. International Journal of Food Microbiology, 2019, 293: 24-33. DOI:10.1016/j.ijfoodmicro.2018.12.016.
[70] SHI Xingmin, LIU Jinren, XU Guimin, et al. Effect of low-temperature plasma on the degradation of omethoate residue and quality of apple and spinach[J]. Plasma Science and Technology, 2018, 20(4): 044004. DOI:10.1088/2058-6272/aa9b78.
[71] YODPITAKA S, MAHATHEERANONT S, BOONYAWAN D,et al. Cold plasma treatment to improve germination and enhance the bioactive phytochemical content of germinated brown rice[J]. Food Chemistry, 2019, 289: 328-339. DOI:10.1016/j.foodchem.2019.03.061.
[72] OLATUNDE O O, BENJAKUL S, VONGKAMJAN K. Combined effects of high voltage cold atmospheric plasma and antioxidants on the qualities and shelf-life of Asian sea bass slices[J]. Innovative Food Science and Emerging Technologies, 2019, 54: 113-122. DOI:10.1016/j.ifset.2019.03.012.
[73] SILVA D A D S, DA SILVA CAMPELO M C, REBOU?AS L, et al.?Use of cold atmospheric plasma to preserve the quality of white shrimp (Litopenaeus vannamei)[J]. Journal of Food Protection, 2019, 82(7): 1217-1223. DOI:10.4315/0362-028X.JFP-18-369.
[74] BAUER A, NI Y, BAUER S, et al. The effects of atmospheric pressure cold plasma treatment on microbiological, physical-chemical and sensory characteristics of vacuum packaged beef loin[J]. Meat Science, 2017, 128: 77-87. DOI:10.1016/j.meatsci.2017.02.003.