崔彥浩
【摘要】數學學習的特點1、高度抽象性,2、嚴密邏輯性.3、廣泛應用性.學習過程中方法總結(一)、培養良好的學習興趣。(二)建立良好的學習數學習慣。(三)、有意識培養自己的各方面能力。(四)、及時了解、掌握常用的數學思想和方法。(五)、逐步形成“以我為主”的學習模式。
【關鍵詞】抽象 興趣 方法
【中圖分類號】G633.6 【文獻標識碼】A 【文章編號】2095-3089(2018)28-0285-02
一、數學學習的特點
1.高度抽象性
數學的抽象,在對象上、程度上都不同于其它學科的抽象,數學是借助于抽象建立起來并借助于抽象發展的。數學的抽象撇開了對象的具體內容,而僅僅保留數量關系和空間形式。在數學家看來,五個石頭、五座大山、五朵金花與五條毒蛇之間,并沒有什么區別。數學家關心的只是“五”。又如幾何中的“點”、“線”、“面”的概念,代數中的“集合”、“方程”、“函數”等概念都是抽象思維的產物。“點”被看作沒有大小的東西,禾長無寬無高;“線”被看作無限延長而無寬無高,“面”則被認為是可無限伸展的無高的面。實際上,理論上的“點”、“線”、“面”在現實中是不存在的,只有充分發揮自己的空間想象力才能真正理解。
2.嚴密邏輯性
數學具有嚴密的邏輯性,任何數學結論都必須經過邏輯推理的嚴格證明才能被承認。邏輯嚴密也并非數學所獨有。任何一門科學,都要應用邏輯工具,都有它嚴謹的一面。但數學對邏輯的要求不同于其它科學因為數學的研究對象是具有高度抽象性的數量關系和空間形式,是一種形式化的思想材料。許多數學結果,很難找到具有直觀意義的現實原型,往往是在理想情況下進行研究的。如一元二次方程求根公式的得出,兩條直線位置關系的確定,無窮小量的得出,等等。數學運算、數學推理、數學證明、數學理論的正確性等,不能像自然科學那樣借助于可重復的實驗來檢驗,而只能借助于嚴密的邏輯方法來實現。
3.廣泛應用性
數學作為一種工具或手段,幾乎在任何一門科學技術及一切社會領域中都被運用。各門科學的“數學化”,是現代科學發展的一大趨勢。我國已故著名數學家華羅庚教授曾指出:“宇宙之大,粒子之微,火箭之速,化工之巧,地球之變,生物之謎,日用之繁,無處不用數學”。這是對數學應用的廣泛性的精辟概括。數學應用的例證不勝枚舉,太陽系九大行星之一的海王星的發現,電磁波的發現,都是歷史上數學應用的光輝范例。
二、學習過程中方法總結
1.培養良好的學習興趣
兩千多年前孔子說過:“知之者不如好之者,好之者不如樂之者。”意思說,干一件事,知道它,了解它不如愛好它,愛好它不如樂在其中。“好”和“樂”就是愿意學,喜歡學,這就是興趣。興趣是最好的老師,有興趣才能產生愛好,愛好它就要去實踐它,達到樂在其中,有興趣才會形成學習的主動性和積極性。在數學學習中,我們把這種從自發的感性的樂趣出發上升為自覺的理性的“認識”過程,這自然會變為立志學好數學,成為數學學習的成功者。那么如何才能建立好的學習數學興趣呢?
(1)課前預習,對所學知識產生疑問,產生好奇心。
(2)聽課中要配合老師講課,滿足感官的興奮性。聽課中重點解決預習中疑問,把老師課堂的提問、停頓、教具和模型的演示都視為欣賞音樂,及時回答老師課堂提問,培養思考與老師同步性,提高精神,把老師對你的提問的評價,變為鞭策學習的動力。
(3)思考問題注意歸納,挖掘你學習的潛力。
2.建立良好的學習數學習慣
習慣是經過重復練習而鞏固下來的穩重持久的條件反射和自然需要。建立良好的學習數學習慣,會使自己學習感到有序而輕松。高中數學的良好習慣應是:多質疑、勤思考、好動手、重歸納、注意應用。良好的學習數學習慣還包括課前自學、專心上課、及時復習、獨立作業、解決疑難、系統小結和課外學習幾個方面。學生在學習數學的過程中,要把教師所傳授的知識翻譯成為自己的特殊語言,并永久記憶在自己的腦海中。
3.有意識培養自己的各方面能力
數學能力包括:邏輯推理能力、抽象思維能力、計算能力、空間想象能力和分析解決問題能力共五大能力。這些能力是在不同的數學學習環境中得到培養的。在平時學習中要注意開發不同的學習場所,參與一切有益的學習實踐活動,如數學第二課堂、數學競賽、智力競賽等活動。平時注意觀察,比如,空間想象能力是通過實例凈化思維,把空間中的實體高度抽象在大腦中,并在大腦中進行分析推理。其它能力的培養都必須學習、理解、訓練、應用中得到發展。特別是,教師為了培養這些能力,會精心設計“智力課”和“智力問題”比如對習題的解答時的一題多解、舉一反三的訓練歸類,應用模型、電腦等多媒體教學等,都是為數學能力的培養開設的好課型,在這些課型中,學生務必要用全身心投入、全方位智力參與,最終達到自己各方面能力的全面發展。
4.及時了解、掌握常用的數學思想和方法
學好高中數學,需要我們從數學思想與方法高度來掌握它。中學數學學習要重點掌握的的數學思想有以上幾個:集合與對應思想,分類討論思想,數形結合思想,運動思想,轉化思想,變換思想。有了數學思想以后,還要掌握具體的方法,比如:換元、待定系數、數學歸納法、分析法、綜合法、反證法等等。在具體的方法中,常用的有:觀察與實驗,聯想與類比,比較與分類,分析與綜合,歸納與演繹,一般與特殊,有限與無限,抽象與概括等。
5.逐步形成“以我為主”的學習模式
數學不是靠老師教會的,而是在老師的引導下,靠自己主動的思維活動去獲取的。學習數學就要積極主動地參與學習過程,養成實事求是的科學態度,獨立思考、勇于探索的創新精神;正確對待學習中的困難和挫折,敗不餒,勝不驕,養成積極進取,不屈不撓,耐挫折的優良心理品質;在學習過程中,要遵循認識規律,善于開動腦筋,積極主動去發現問題,注重新舊知識間的內在聯系,不滿足于現成的思路和結論,經常進行一題多解,一題多變,從多側面、多角度思考問題,挖掘問題的實質。
6.針對自己的學習情況,采取一些具體的措施
記數學筆記,特別是對概念理解的不同側面和數學規律,教師在課堂中擴展的課外知識。記錄下來本章你覺得最有價值的思想方法或例題,以及你還存在的未解決的問題,以便今后將其補上。
建立數學糾錯本。把平時容易出現錯誤的知識或推理記載下來,以防再犯。爭取做到:找錯、析錯、改錯、防錯。達到:能從反面入手深入理解正確東西;能由果朔因把錯誤原因弄個水落石出、以便對癥下藥;解答問題完整、推理嚴密。
熟記一些數學規律和數學小結論,使自己平時的運算技能達到了自動化或半自動化的熟練程度。
參考文獻:
[1]韓仁生.高中生數學考試失敗歸因的性別差異研究[J].上海教育科研,1994.
[2]關丹丹.高中生數學成績的性別差異研究.數學教育學報2017,6.