鄂福常
摘要:數學思想方法是數學的靈魂和精髓, 是數學素養的重要內容之一,學生只有領會了數學思想方法,才能有效地應用知識,形成能力,從而為解決數學問題、進行數學思維起到很好的促進作用。如何在中學數學教材中體現數學思想方法,有意識地向學生滲透數學思想方法是一個十分重要的問題。我們必須重視在數學教學中滲透數學思想方法,讓學生學會用數學思想方法分析問題、解決問題,切實實現素質教育的要求。
關鍵詞:數學思想;滲透;自覺性;可行性;反復性
數學領域中的知識博大精深,學之不盡。小學生們所學到的只是數學基礎知識中的最基本的東西。因此,學校教學要求學生掌握基本概念、基本定律、基本運算、演算例題等一些基礎知識固然重要,但更重要的是要讓學生了解或理解一些數學的基本思想,學會掌握一些研究數學的基本方法,從而獲得獨立思考的自學能力。
所謂的數學思想,是指人們對數學理論與內容的本質認識,是從某些具體數學認識過程中提煉出的一些觀點,它揭示了數學發展中普遍的規律,它直接支配著數學的實踐活動,這是對數學規律的理性認識。作為一名小學教師,每天的課堂教學我們總是在有意或無意的滲透著數學思想方法。美國教育心理家布魯納指出:掌握基本的數學思想方法,能使數學更易于理解和更利于記憶,領會基本數學思想和方法是通向遷移大道的“光明之路”。 在小學數學教學中,教師有計劃、有意識地滲透一些數學思想方法非常重要。
下面我就談談在小學數學教學中,我是如何滲透數學思想方法:
一、提高滲透的自覺性,在知識的形成、發展過程中,滲透數學思想與方法。
數學思想方法隱含在數學知識體系里,是無“形”的,而數學概念、法則、公式、性質等知識都明顯地寫在教材中,是有“形”的。作為教師首先要改變應試教育觀念,從思想上不斷提高對滲透數學思想方法重要性的認識,把掌握數學知識和滲透數學思想方法同時納入教學目的,把數學思想方法教學的要求融入備課環節。其次要深入鉆研教材,努力挖掘教材中可以進行數學思想方法滲透的各種因素,對于每一章每一節,都要考慮如何結合具體內容進行數學思想方法滲透,滲透哪些數學思想方法,怎么滲透,滲透到什么程度,應有一個總體設計,提出不同階段的具體教學要求。在小學數學教學中,教師不能僅僅滿足于學生獲得正確知識的結論,而應該著力于引導學生對知識形成過程的理解。讓學生逐步領會蘊涵其中的數學思想方法。也就是說,對于數學教學重視過程與重視結果同樣重要。例如,長方體和正方體的認識概念教學,可以按下列程序進行:(1)由實物抽象為幾何圖形,建立長方體和正方體的表象;(2)在表象的基礎上,指出長方體和正方體特點,使學生對長方體和正方體有一個更深層次的認識;(3)利用長方體和正方體的各種表象,分析其本質特征,抽象概括為用文字語言表達的長方體和正方體的概念;(4)使長方體和正方體的有關概念符號化。顯然,這一數學過程,既符合學生由感知到表象,再到概念的認知規律,又能讓學生從中體會到教師是如何應用數學思想方法,對有聯系的材料進行對比的,對空間形式進行抽象概括的,對教學概念進行形式化的。
二、把握滲透的可行性,在解題思路的探索中,揭示數學思想與方法。
為了更好地在小學數學教學中滲透數學思想方法,教師不僅要對教材進行研究,潛心挖掘,而且還要講究思想滲透的手段和方法。在教學過程中,我經常通過以下途徑及時向學生滲透數學思想方法:(1)在知識的形成過程中滲透。例如量的計量教學,首要問題是要合理引入計量單位。作為課本不可能花大氣力去闡述這個過程。但是作為教師根據教學的實際情況,適當地展示它的簡單過程和所運用的思想方法,有利于培養學生的創造性思維品質和為追求真理而勇于探索的精神。例如,在“面積與面積單位”一課教學中,當學生無法直接比較兩個圖形面積的大小時,引進“小方塊”,并把它一個一個地鋪在被比較的兩個圖形上,這樣,不僅比較出了兩個圖形的大小,而且,使兩個圖形的面積都得到了“量化”。使形的問題轉化為數的問題。在這一過程中,學生親身體驗到“小方塊”所起的作用。很自然地滲透了“單位”思想。(2)在問題的解決過程中滲透。如:教學“雞兔同籠” 這一課時,在解決問題的過程中,用圖表、課件展示的方法讓學生逐步領會“假設”這種策略的奧妙所在。(3)在復習小結中滲透。在章節小結、復習的數學教學中,我們要注意從縱橫兩個方面,總結復習數學思想與方法,使師生都能體驗到領悟數學思想,運用數學方法,提高訓練效果,減輕師生負擔,走出題海誤區的輕松愉悅之感。如教學 “梯形面積”這一單元之后,我及時幫助學生依靠梯形面積的推導過程回憶平行四邊形的面積、三角形的面積公式的推導方法,使學生能清楚地意識到:“轉化”是解決問題的有效方法。
三、注重滲透的反復性,在知識的總結歸納過程中,概括數學思想與方法。
數學思想方法的教學,不僅是為了指導學生有效地運用數學知識、探尋解題的方向和入口,更是對培養人的思維素質有著特殊不可替代的意義。它在新授中屬于“隱含、滲透”階段,在練習與復習中進入明確、系統的階段,也是數學思想方法的獲得過程和應用過程。數學思想方法的教學過程首先是從模仿開始的。學生按照例題師范的程序與格式解答和例題相同類型的習題,實際上是數學思想方法的機械運用。此時,并不能肯定學生已領會了所用的數學思想方法,只當學生將它用于新的情景,解決其他有關的問題并有創意時,才能肯定學生對這一教學本質、數學規律有了深刻的認識。
我們知道,最好的學習效果是主動參與,親自發現,數學思想方法的學習也不例外。在教學中,通過數學思想方法的廣泛應用,讓學生從主觀上重視數學思想方法的學習,進而增強自覺提煉數學思想方法的意識。教師對習題的設計也應該從數學思想方法的角度加以考慮,盡量多安排一些能使各種學習水平的學生深入淺出地作出解答的習題,它既有具體的方法或步驟,又能從一類問題的解法去思考或從思想觀點上去把握,形成解題方法,進而深化為數學思想。例如;在教學完多邊形面積的計算以后,可以由易到難,出幾題運用移動、割補等方法解決的實際問題,這樣做不僅可以讓學生領會到轉化的數學思想方法,對提高學生的學習興趣也大有好處。讓學生在操作中掌握,在掌握后領悟,使數學思想方法在知識能力的形成過程中共同生成。
我們小學數學教師只有重視對數學思想方法的學習研究,探討其教學規律,才能適應新課改的需要。數學思想方法的滲透具有長期性、反復性。對學生進行數學思想方法的滲透必定要經歷一個循環往復、螺旋上升的過程,往往是幾種思想方法交織在一起,在教學過程中教師要依據具體情況,有效進行數學思想方法的滲透。
現代數學思想方法的內涵極為豐富,諸如還有集合思想、極限思想、優化思想、統計思想、等等,小學數學教學中都有所涉及。我們廣大小學數學教師要做教學有心人,有意滲透,有意點撥,重視數學史的滲透,重視課堂教學小結,要以適應小學生年齡特點的大眾化、生活化方式呈現教學內容,讓學生通過現實活動,主動參與、自主探究,學會用數學思維方法提出問題、分析問題、解決問題,從而讓學生的數學思維能力得到切實、有效地發展,進而提高全民族的數學文化素養。
數學思想方法是數學思想和數學方法的總稱。是數學的精髓,只有掌握了數學思想方法,才算真正掌握了數學。因而,數學思想方法也應是學生必須具備的基本素質之一。我們在教學時,應充分挖掘由數學基礎知識所反映出來的數學思想和方法,設計數學思想方法的教學目標,結合教學內容適時滲透、反復強化、及時總結,用數學思想方法武裝學生,使學生真正成為數學的主人。對于究竟應如何滲透,我認為沒有固定的方法可言,但是我們可以做到積極的挖掘與引導,適當的訓練與概括,合理的設計與運用,只要這樣長期堅持下去,一定能夠使學生較好的掌握數學思想方法,提高解題能力。
從某種意義上講,數學思想方法的教學甚至比傳授知識更重要。因為思維的鍛煉不僅對學生在某一學科上有益,更使其終生受益。站在“以學生發展為本”的角度上看,在教學中適時適度滲透數學思想方法將對培養學生可持續發展的能力有極大好處,正適合現在方興未艾的“素質教育”,其教學潛在價值更是不可估量的。
參考文獻:
[1]宋欣穎;數學思想方法及其教學研究[J];電大理工;2004年01期
[2]王淑花;;數學思想方法在數學教學中的滲透[J];山西廣播電視大學學報;2007年03期