徐雪芬,吳水水,王衡,黃劍
(廣東醫科大學,廣東湛江524023)
雌激素受體(ER)與多種腫瘤的發生發展密切相關。大約70%的乳腺癌ER表達陽性[1]。ER陽性表達的腫瘤往往預后好、對內分泌治療敏感。遺憾的是,大多數患者經過1年多的治療后,將產生不同程度耐藥,給臨床治療帶來極大挑戰[2~4]。ER主要包含ER-α和ER-β兩種類型。ER-α的主要類型ER-α66位于細胞核,屬于核型雌激素受體,而ER-α36定位于細胞膜,屬膜型雌激素受體。探索膜型雌激素受體的結構特點及其相關信號通路,有助于了解其在腫瘤發生發展中的作用,甚至發現逆轉ER相關腫瘤耐藥的方法。現將膜型雌激素受體ER-α36的分子結構和相關信號通路研究進展綜述如下。
2005年Wang等[5]從人的子宮內膜cDNA庫發現了一種全長的cDNA克隆基因,這種基因完全契合了ER-α66配體依賴區基因轉錄的DNA序列。其cDNA全長5.4 kb,可以轉錄形成310個氨基酸開放閱讀框,編碼出分子量約為35.7 KDa蛋白,即ER-α36。ER-α36缺乏ER-α66的轉錄激活區(AF-1 和AF-2),保留了DNA結合區域、部分二聚體和配體結合區域。其cDNA序列的開放閱讀框完好地匹配了ER-α66基因DNA序列的外顯子2至外顯子6區域[6]。ER-α36的配體結合區可以進行轉錄后的棕櫚酰化修飾,還有3個潛在的豆蔻酰化位點[7, 8]。因此,ER-α36可能在雌激素的基因組或非基因組信號途徑中都發揮一定作用。
Wang等[5]認為,ER-α36能夠抑制ER-α66和ER-β的基因組信號轉導途徑,而ER-α66又可以抑制ER-α36的AP1啟動子活性,這種抑制可以被ER-α36和ER-α46本身解除。此外,ER-α46又可以抑制ER-α66的AF-1結構域的轉錄活性[6]。所以在同一細胞中,ER-α66、46和36的相對水平決定著細胞選擇基因組還是非基因信號轉導途徑[9]。17-β雌二醇(E2)能夠激活快速激活ER-α36,引起MAPK / ERK與PI3K/ Akt信號通路的激活,導致ERK、Akt磷酸化[10, 11]。其他雌激素包括雌酮(E1)、17-α雌二醇(E2α)、雌三醇(E3)和雌四醇(E4)都可以與ER-α36并發揮類似作用。表明ER-α36可能比ER-α66具有更廣泛的配體結合譜[12]。
ER通過蛋白與蛋白、蛋白與DNA錨定轉錄因子之間相互作用調節雌激素下游的信號轉錄。ERs甚至可以與上皮生長因子受體(EGFR)超家族相互作用,產生同源或異源二聚體,上調或下調乳腺腫瘤細胞對雌激素的敏感性。有研究用低濃度(nmol/L)的雌激素作用于高表達ER-α36的乳腺癌細胞,能快速激活ERs信號通路引起的細胞增殖活化;但高濃度(μmol/L)的雌激素會抑制高表達ER-α36乳腺癌細胞的增殖[8, 13, 14]。ER-α36對激素作用敏感,用E2-BSA(一種結合牛血清蛋白,具有不滲透細胞膜特性的雌二醇)處理ER-α36高表達乳腺癌細胞,數分鐘后即可引起ERK磷酸化[12],表明ER-α36能介導快速、非基因組的雌激素信號途徑。
ER-α36主要定位于細胞膜[15],其表達不受ER-α66的影響。無論在ER陰性還是ER陽性乳腺癌中均可被檢測到,但在ER-α66陰性乳腺癌中呈現出高表達特性[16]。約40% ER-α66陽性的乳腺癌組織ER-α36高表達。然而在人正常乳腺細胞系MCF-10A中 ER-α36和ER-α66的表達均呈陰性。另外,高表達ER-α36的乳腺癌細胞ER-α66和ER-β依賴和非依賴的雌激素基因組信號轉錄活性下降[12],提示ER-α36有可能抑制雌激素的基因組信號。三陰(ER陰、PR陰、HER-2陰)乳腺癌細胞MDA-MA-231和MDA-MA-436 中ER-α36呈高表達。ER-α36與ER-α66這種雙向抑制效應產生的機制尚不明確[17],但較為肯定的是ER-α36與配體結合后可激活下游信號激發多種細胞內信號級聯反應,調控腫瘤細胞的增殖、分化和凋亡,甚至參與了腫瘤耐藥。我們前期研究發現,82例三陰型(Basal-like 型)乳腺癌患者ER-α36陽性表達率96.3%,p-ERK及p-AKT陽性表達率均為97.6%,這些患者均具有腫瘤體積大、易轉移和預后差的特點。表明ER-α36對于乳腺癌患者預后具有重要監測價值。
膜型雌激素受體與胞內多種信號存在著交叉對話現象,并參與介導細胞內的快速信號途徑[14],如腺苷酸環化酶途徑(AC)、蛋白激酶C途徑(PKC)、G蛋白偶聯途徑、磷脂酰三磷酸肌醇激酶PI3K/AKT信號途徑、絲裂原活化蛋白激酶MAPK/ERK信號途徑[18]、Ca2+通路[19]和Src激酶激活的信號途徑等[20]。總結上述激活事件,可歸納為3種主要的信號通路:Ras-Raf-MEK-MAPK通路、G蛋白-Src-PI3K-AKt通路、PLC-PKC-cAMP-PKA通路[21]。
2.1 Ras-Raf-MEK-MAPK-Erk途徑 絲裂原激活的蛋白激酶途徑在許多腫瘤的發生、發展中扮演重要角色,如乳腺癌、前列腺癌、結直腸癌等。Wang等[12]發現用E2β-BSA作用于轉染了ER-α36的HEK293細胞,與對照組相比,細胞ERK磷酸化水平明顯升高。表明ER-α36能夠激活MAPK/ERK信號通路。MAPK又可以被MAPK激酶(MEKs)的特定蘇氨酸和酪氨酸殘基磷酸化而激活,MEKs本身又被其上游蛋白激酶Raf激活,Raf蛋白同時又受到Ras蛋白家族的調節。有趣的是低濃度雌激素作用于三陰性乳腺癌細胞株,激活了原癌基因Src,并使酪氨酸激酶位點Src-Y416磷酸化,通過胞內信號級聯反應激活MAPK/ERK途徑,促進細胞有絲分裂,加速腫瘤進展。高濃度時則使Src-Y527磷酸化,抑制腫瘤細胞生長[22, 23]。通過研究ER陽性乳腺癌細胞株發現,Src和EGFR對雌激素刺激生長起重要作用,并調節了信號轉錄激活因子5(STAT5)活性[24]。E2誘導激活Src-Y416磷酸化同時伴隨EGFR-Y845磷酸化[12]。
2.2 G蛋白-Src-PI3K-AKt途徑 絲/蘇氨酸蛋白激酶Akt又名蛋白激酶B(PKB),在細胞增殖、生存和凋亡過程中發揮重要作用。Lin等[25]發現,用睪酮、E2或tamoxifen作用于子宮內膜癌Hec1A細胞,均能激活PI3K/Akt信號通路,使其發生磷酸化,敲除ER-α36后該信號通路不能被引出。另外,用tamoxifen作用于高表達ER-α36的MCF-7細胞,能誘導Akt磷酸化,這種作用能被PI3K抑制劑LY294002阻斷[26]。
2.3 PLC-PKC-AC-cAMP-PKA途徑 E2可以通過ER-α36快速作用于神經元GABA受體上的G蛋白門控內向整流鉀通道(GIRK)[19, 27],調節神經元的興奮性。PKCs本身位于磷脂酶C(PLC)-三磷酸肌醇(PI3)-二酯酰甘油(DAG)信號下游。PKC的活化可以抑制海馬CA1區GABA受體激活GIRK通道。Qiu等[27, 28]發現E2可以激活PKC和PKA,從而改變雌性豚鼠下丘腦GRCPs偶聯的K+通量。E2通過激活cAMP瀑布式信號增強紅藻氨酸鹽/海仁酸誘導的K+電流,PKA的特異性抑制劑(Rp-cAMP)減弱了E2的這種效應[28]。E2誘導的快速PLC-PKC-PKA信號途徑可能參與協同中樞神經系統(CNS)遞質的傳遞,并能增強大腦回路的突觸效應,這對維持CNS的穩態至關重要。
參考文獻:
[1] Yarden Y, Sliwkowski MX. Untangling the ErbB signalling network [J]. Nat Rev Mol Cell Biol, 2001,2(2):127-137.
[2] Jensen EV, Desombre ER. Estrogen-receptor interaction [J]. Science, 1973,182(4108):126-134.
[3] Kuiper GG, Enmark E, PeltoHuikko M, et al. Cloning of a novele estrogen receptor expressed in rat prostate [J]. 1996,7(4):155-157.
[4] Hayashi S, Yamaguchi Y. Basic research for hormone-sensitivity of breast cancer [J]. Breast Cancer, 2006,13(2):123-128.
[5] Wang Z, Zhang X, Shen P, et al. Identification, cloning, and expression of human estrogen receptor-alpha36, a novel variant of human estrogen receptor-alpha66 [J]. Biochem Biophys Res Commun, 2005,336(4):1023-1027.
[6] Flouriot G, Brand H, Denger S, et al. Identification of a new isoform of the human estrogen receptor-alpha (hER-alpha) that is encoded by distinct transcripts and that is able to repress hER-alpha activation function 1 [J]. EMBO J, 2000,19(17):4688-4700.
[7] Rao J, Jiang X, Wang Y, et al. Advances in the understanding of the structure and function of ER-alpha36,a novel variant of human estrogen receptor-alpha [J]. J Steroid Biochem Mol Biol, 2011,127(3-5):231-237.
[8] Yin L, Wang ZY. Roles of the ER-α36-EGFR/HER2 positive regulatory loops in tamoxifen resistance [J]. Steroids, 2016,11(1):95-99.
[9] Xu BZ, Lin SL, Li M, et al. Changes in estrogen receptor-alpha variant (ER-alpha36) expression during mouse ovary development and oocyte meiotic maturation [J]. Histochem Cell Biol, 2009,131(3):347-354.
[10] Segars JH, Driggers PH. Estrogen action and cytoplasmic signaling cascades. Part I: membrane-associated signaling complexes [J]. Trends Endocrinol Metab, 2002,13(8):349-354.
[11] 彭瑤, 連增林. 新型雌激素受體ER-α36的生物學效應及其相關疾病的研究現狀 [J]. 中國醫藥生物技術, 2012, 7(1): 47-50.
[12] Wang Z, Zhang X, Shen P, et al. A variant of estrogen receptor-{alpha}, hER-{alpha}36: transduction of estrogen- and antiestrogen-dependent membrane-initiated mitogenic signaling [J]. Proc Natl Acad Sci USA, 2006,103(24):9063-9068.
[13] Zhang J, Li G, Li Z, et al. Estrogen-independent effects of ER-alpha36 in ER-negative breast cancer [J]. Steroids, 2012,77(6): 666-673.
[14] Zhang X, Deng H, Wang ZY. Estrogen activation of the mitogen-activated protein kinase is mediated by ER-alpha36 in ER-positive breast cancer cells [J]. J Steroid Biochem Mol Biol, 2014,14(3):434-443.
[15] Shi YE, Chen Y, Dackour R, et al. Synuclein gamma stimulates membrane-initiated estrogen signaling by chaperoning estrogen receptor (ER)-alpha36, a variant of ER-alpha [J]. Am J Pathol, 2010,177(2):964-973.
[16] Jia S, Zhang X, He DZ, et al. Expression and function of a novel variant of estrogen receptor-alpha36 in murine airways [J]. Am J Resp Cell Mol, 2011,45(5):1084-1089.
[17] Vranic S, Gatalica Z, Deng H, et al. ER-alpha36, a novel isoform of ER-alpha66, is commonly over-expressed in apocrine and adenoid cystic carcinomas of the breast [J]. J Clin Pathol, 2011,64(1):54-57.
[18] Wang ZY, Yin L. Estrogen receptor alpha-36 (ER-alpha36): A new player in human breast cancer [J]. Mol Cell Docr, 2015, 418 (Pt 3):193-206.
[19] Malyala A, Kelly M, Ronnekleiv O. Estrogen modulation of hypothalamic neurons: Activation of multiple signaling pathways and gene expression changes [J]. Steroids, 2005,70(5-7):397-406.
[20] Fox EM, Bernaciak TM, Wen J, et al. Signal transducer and activator of transcription 5b, c-Src, and epidermal growth factor receptor signaling play integral roles in estrogen-stimulated proliferation of estrogen receptor-positive breast cancer cells [J]. Mo Endo, 2008,22(8):1781-1796.
[21] Zhang D, Trudeau VL. Integration of membrane and nuclear estrogen receptor signaling [J]. Mol Integr Physiol, 2006, 144(3):306-315.
[22] Zhang X, Ding L, Kang L, et al. Estrogen receptor-alpha 36 mediates mitogenic antiestrogen signaling in ER-negative breast cancer cells [J]. PloS One, 2012,7(1):30174.
[23] Deng H, Zhang XT, Wang ML, et al. ER-alpha36-mediated rapid estrogen signaling positively regulates ER-positive breast cancer stem/progenitor cells [J]. PloS One, 2014,9(2):88034.
[24] Zhang XT, Ding L, Kang LG, et al. Involvement of ER-alpha36, Src, EGFR and STAT5 in the biphasic estrogen signaling of ER-negative breast cancer cells [J]. Oncol Rep, 2012,27(6):2057-2065.
[25] Lin SL, Yan LY, Liang XW, et al. A novel variant of ER-alpha, ER-alpha36 mediates testosterone-stimulated ERK and Akt activation in endometrial cancer Hec1A cells [J]. Reprod Biol Endo, 2009,7(1):102.
[26] Driggers P H, Segars J H. Estrogen action and cytoplasmic signaling pathways. Part II: the role of growth factors and phosphorylation in estrogen signaling [J]. Trend Endo Metab, 2002,13(10):422-427.
[27] Gu Q, Moss R L. 17 beta-Estradiol potentiates kainate-induced currents via activation of the cAMP cascade [J]. J Neurosci Officia J Soci, 1996,16(11):3620.
[28] 張艷秋, 孫立柱, 王昳凡,等.曲妥珠單抗聯合內分泌維持治療HR和HER-2陽性晚期乳腺癌的臨床觀察 [J]. 臨床腫瘤學雜志, 2017, 22(5): 427-431.
[29] Zhang X, Wang ZY. Estrogen receptor-alpha variant, ER-alpha36, is involved in tamoxifen resistance and estrogen hypersensitivity [J]. Endocrinology, 2013,154(6):1990-1998.
[30] 樊官偉, 何俊, 王虹, et al. 雌激素及其受體信號轉導途徑的研究進展 [J]. 中國臨床藥理學與治療學, 2007,12(3):266-269.
[31] Tu BB, Lin SL, Yan LY, et al. ER-alpha36, a novel variant of estrogen receptor alpha, is involved in EGFR-related carcinogenesis in endometrial cancer [J]. Am J Obstet Gynecol, 2011,205(3):2271-2276.
[32] Chung A, Cui X, Audeh W, et al. Current status of anti-human epidermal growth factor receptor 2 therapies: predicting and overcoming herceptin resistance [J]. Clin Breast Cancer, 2013,13(4):223-232.
[33] O′Sullivan CC, Smith KL. Therapeutic Considerations in Treating HER2-Positive Metastatic Breast Cancer [J]. Curr Breast Cancer Rep, 2014,6(3):169-182.