程立新
摘 要:微課作為先進的信息化教學(xué)方法,一經(jīng)推出便已經(jīng)在廣闊的教學(xué)領(lǐng)域中嶄露頭角,經(jīng)過近幾年的發(fā)展,逐漸成為我國高中數(shù)學(xué)教學(xué)中的一種重要教學(xué)方法。微課教學(xué)模式的出現(xiàn),顛覆了傳統(tǒng)高中數(shù)學(xué)課堂中教師教、學(xué)生學(xué)的學(xué)習(xí)模式,而更加側(cè)重利用微課引導(dǎo)學(xué)生自主學(xué)習(xí)從而獲得知識。立足于探究微課在高中數(shù)學(xué)教學(xué)中的應(yīng)用,希望能夠為廣大高中數(shù)學(xué)教育工作者揭示出一條高中數(shù)學(xué)教學(xué)的有效路徑,并希望藉此促進高中數(shù)學(xué)學(xué)科與信息化教學(xué)的融合發(fā)展。
關(guān)鍵詞:微課;高中數(shù)學(xué);翻轉(zhuǎn)課堂;教學(xué)導(dǎo)入;解題教學(xué)
微課教學(xué)起源于美國,通常以5~10分鐘的視頻教學(xué)內(nèi)容針對性地說明一個教學(xué)問題,在微課應(yīng)用于高中數(shù)學(xué)的教學(xué)過程中,微課以其便捷性、趣味性、針對性博得了廣大高中數(shù)學(xué)師生的一致青睞。將微課教學(xué)應(yīng)用于高中數(shù)學(xué)教學(xué)中,能夠有效引導(dǎo)學(xué)生進行自主學(xué)習(xí),轉(zhuǎn)變了高中數(shù)學(xué)教學(xué)的方式。我們在高中數(shù)學(xué)教學(xué)中,在翻轉(zhuǎn)課堂、教學(xué)導(dǎo)入以及解題教學(xué)過程中有效運用了微課教學(xué),取得了良好的課程教學(xué)效果。以下根據(jù)具體教學(xué)情況分別進行介紹。
一、基于微課的翻轉(zhuǎn)課堂教學(xué)在高中數(shù)學(xué)中的應(yīng)用
微課最初的發(fā)明源于翻轉(zhuǎn)課堂教學(xué),所謂翻轉(zhuǎn)課堂,就是指在學(xué)生課前自主學(xué)習(xí)階段組織學(xué)生利用微課自主學(xué)習(xí),在課堂教學(xué)階段由師生共同解決課前自主學(xué)習(xí)中存在的問題,再在課后復(fù)習(xí)階段師生通過互聯(lián)網(wǎng)進行課后的復(fù)習(xí)。翻轉(zhuǎn)課堂教學(xué)模式顛覆了傳統(tǒng)的教學(xué)模式,使學(xué)生能夠在學(xué)習(xí)中更為主動和自主,從而有效提升學(xué)習(xí)效率。
例如,我們在教學(xué)“數(shù)列”的過程中,就利用翻轉(zhuǎn)課堂為學(xué)生整理制作了一部長度為10分鐘的數(shù)列介紹微課視頻。該視頻從數(shù)列的概念與簡單表示方法介紹入手,之后分別介紹等差數(shù)列與等比數(shù)列的概念、定義、通項公式、前n項和公式,讓學(xué)生對即將學(xué)習(xí)的“數(shù)列”單元產(chǎn)生總體認識。在微課視頻的末尾,我們?yōu)閷W(xué)生留下了思考問題,讓學(xué)生根據(jù)觀看視頻產(chǎn)生對數(shù)列的理解,分別列出一個等差數(shù)列和一個等比數(shù)列的前5項,作為在課堂教學(xué)中的討論基礎(chǔ)。
二、微課教學(xué)在高中數(shù)學(xué)教學(xué)導(dǎo)入過程中的應(yīng)用
微課不僅能夠在翻轉(zhuǎn)課堂的學(xué)習(xí)過程中應(yīng)用,在高中數(shù)學(xué)的教學(xué)導(dǎo)入過程中微課也同樣能夠得到應(yīng)用。利用微課視頻進行教學(xué)導(dǎo)入,可以有效提升教學(xué)導(dǎo)入的趣味性,為學(xué)生展開興趣化教學(xué)。微課導(dǎo)入視頻以5分鐘長度為宜,內(nèi)容需要與接下來的正式教學(xué)內(nèi)容緊密相關(guān),同時又富有啟發(fā)性、引導(dǎo)性和趣味性,從而激起學(xué)生的探究欲望,有效地提升學(xué)生在接下來課程中的學(xué)習(xí)積極性。
例如,我們在“等比數(shù)列”一課的教學(xué)導(dǎo)入過程中就利用了微課導(dǎo)入的方式,進行了趣味化的視頻導(dǎo)入。我們的微課導(dǎo)入視頻內(nèi)容取自“國王與象棋”的故事,利用動畫的手段為學(xué)生揭示了等比數(shù)列的定義。故事講述了象棋發(fā)明者在發(fā)明象棋后,國王十分滿意,提出要對象棋發(fā)明者進行獎賞。象棋發(fā)明者說我不要您的獎賞,只要在我的棋盤上放幾顆麥子就行。第一個格子放一粒,第二個格子放兩粒,每個格子都放前一個格子的2倍,直到放滿棋盤為止。國王感到用不了多少麥子,可是放到第20格的時候一袋麥子就空了,最后發(fā)現(xiàn)滿足不了他的要求。通過這個導(dǎo)入視頻,我們?yōu)閷W(xué)生介紹了這個等比數(shù)列是a1為1,公比為2的有窮等比數(shù)列,并為學(xué)生介紹了等比數(shù)列的通項公式,讓學(xué)生嘗試計算放到64格的時候需要多少粒麥子。
三、微課教學(xué)在高中數(shù)學(xué)解題教學(xué)過程中的應(yīng)用
微課教學(xué)在高中數(shù)學(xué)教學(xué)過程中還能用于解題教學(xué),微課以其細膩的講解手法,能夠同步傳輸數(shù)學(xué)問題中的數(shù)字、符號、圖形、圖表等數(shù)學(xué)元素與教師的解題講解,能夠在有效節(jié)省課程教學(xué)時間的基礎(chǔ)上提升解題效率。
如例題:在等差數(shù)列{an}中,已知a18=54;a17+a15+a13=a16+a14+a12+9;a11+a9=a10+a8+6。求該數(shù)列的前10項和S10。
在這道題的微課解答過程中,首先為學(xué)生復(fù)習(xí)等差數(shù)列前n項和公式:Sn與等差數(shù)列的通項公式an=a1+(n-1)d,明確要解答這道題需要求出a1和d。之后利用轉(zhuǎn)化的方法,將a17+a15+a13=a16+a14+a12+9轉(zhuǎn)化為2a+a(17+15+13)-2a-a(16+14+12)=9,求出a3=9,用相同的方法求出a2=6。之后再利用a3-a2=3的方法得出公差d=3,利用a18=a1+(18-1)d的方法得出a1=3。最后利用S10=10×[3+3+3×(10-1)]÷2=165的方法求出結(jié)果。
總而言之,我們在高中數(shù)學(xué)教學(xué)過程中,基于信息化教學(xué)理念有效運用了微課教學(xué),使學(xué)生在翻轉(zhuǎn)課堂、教學(xué)導(dǎo)入、解題教學(xué)的過程中盡享微課教學(xué)帶來的便利。根據(jù)實踐證明,微課教學(xué)能夠有效地完成各種高中數(shù)學(xué)教學(xué)任務(wù),且學(xué)生十分喜愛。我們希望微課教學(xué)能夠在高中數(shù)學(xué)的教學(xué)領(lǐng)域中得到更加廣泛的應(yīng)用,從而切實提升高中數(shù)學(xué)教學(xué)質(zhì)量。
參考文獻:
[1]陳彥琪.微課在高中數(shù)學(xué)課堂教學(xué)中有效應(yīng)用的探究[J].教育教學(xué)論壇,2017(8):277-278.
[2]段建輝.試論如何利用“微課”提高高中數(shù)學(xué)的教學(xué)效率[J].新課程,2018(12):10-11.
編輯 李琴芳