韓麗麗+趙立英+白敬



摘要:針對具有時變時延的網絡化控制系統(networked control system,NCS),提出一種新的分散事件觸發通訊機制。該機制可以有效的節約網絡資源并且不依賴于狀態數據的完整信息,若干個空間分布式傳感器結點采集狀態數據的局部信息并根據子傳輸機制傳輸信號。本文首先建立包含網絡時延和分散事件觸發條件的閉環NCS模型,然后利用Lyapunov穩定性理論和線性矩陣不等式方法給出閉環系統漸近穩定的充分條件,進而給出 控制器和分散事件觸發機制的協同設計方法,最后通過Matlab數值仿真驗證該方法的有效性。
關鍵字:網絡控制系統;分散事件觸發機制;時變時延;線性矩陣不等式
中圖分類號:TP273 文獻標志碼:A
Abstract: Aim at the networked control systems with time-varying delay (networked control system, NCS), in order to save the limited network resources, decentralized event-trigger communication mechanism is introduced. This mechanism can effectively save network resources and does not depend on the complete information of state data, many spatially distributed sensors collecte local information and transmit it according to sub-communication scheme.By establishing a closed-loop NCS model containing the delay and decentralized event-trigger, and using Lyapunov stability theory and liner matrix inequality approach, the sufficient condition is derived for the closed-loop system with asymptotic stability. Moreover, a method of co-design is given for controller and decentralized event-trigger mechanism. At last, a numerical simulation example is given to prove the effectiveness of the method.
Key word: Networked control systems;decentralized event-trigger; time-vary delay; liner matrix inequality
1.引言部分
網絡控制系統是由傳感器,控制器,執行器等部件通過網絡構成的閉環系統,與傳統的控制系統相比,NCS具有成本低,接線少,便于維護與安裝等優點,但是由于網絡寬帶有限,該系統面臨著時延,丟包,失穩等現象[1-3]。另外,由于NCS的大規模分布式構架,工作環境和系統建模誤差的變化,其不確定因素也變多,所以針對同時具有參數不確定性和外部擾動的系統有必要研究其魯棒穩定性[4-5]。
為了有效利用網絡資源,事件觸發控制成為當前研究的熱點之一。文獻[6]提出一種離散事件觸發機制,即在采樣時刻檢測系統的狀態并計算相應誤差,然后與預先設定閾值比較,判斷系統狀態數據是否需要傳輸。文獻[7]在離散事件觸發基礎上研究了含參數不確定的時變時延控制系統的魯棒完整性。文獻[8]在文獻[7]的時變時延系統中又增加了外部擾動因素并進行了 控制器的設計保證系統具有 性能。文獻[9]和文獻[10]研究的分別是數據采樣系統和神經網絡控制系統,為了達到節約有限資源的作用而提出一種分散事件觸發機制。受此啟發,把這一思想運用在網絡控制系統中。考慮到現有的網絡控制系統中關于事件觸發的文獻都是假設用一個事件觸發條件判斷采集的數據是否可以通過網絡傳輸。而本文提出的分散事件觸發機制與現有文獻相比有以下幾點創新:第一,用若干個空間分布式傳感器采集狀態數據的局部信息,然后利用相應的事件觸發條件判斷局部信息是否需要傳輸。顯然這樣設計的優點在于不同的事件觸發機制提供不同的傳輸條件,每個觸發機制只是依賴狀態數據的局部信息。第二,改善以往的單通道數據傳輸方式,采用多通道傳輸的思想,盡可能緩解帶寬受限的問題。第三,分散事件觸發機制具有更廣泛的意義,文獻[6-8]提到的離散事件觸發機制都是分散事件觸發機制的特殊情況。
本文在文獻[6-8]的基礎上,考慮不確定性網絡時延的NCS并通過分散事件觸發機制來提高網絡資源的利用率。首先提出包含網絡屬性,不確定參數和觸發條件的閉環系統漸近穩定的充分條件,進一步給出 狀態反饋控制器和分散事件觸發機制的協同設計方法。最后通過仿真算例驗證了該方法的有效性。
5結論
本文針對一類具有時變時延的不確定NCS,提出了一種新穎的事件觸發機制,即分散事件觸發機制,使得系統在保持穩定的前提下還有效的節約了網絡資源并降低了信號的傳輸率。同時給出了網絡控制系統 控制器和通訊協議協同設計的方法。最后通過數值仿真驗證了本文所提方法的有效性。
參考文獻
[1] Huijun Gao,Xiangyu Meng,Tongwen Chen.Stab-
ilization of network control systems with a new
delay Characterization[J].IEEE Transaction on
Automatic Control,2008,53(9):2142-2148 .
[2] Zidong Wang,Fuwen Yang,Daniel W.C.Ho,Xiao
hui Liu.Robust control for network systems
with random packet losses[J].IEEE Transactions
on Systems,Man,and Cybernetics,Part B(Cybern-
etics),2007,37(4):916-924.
[3] Liqian Zhang,Yang Shi,Tongwen Chen,Biao Hua-
ng.A new method for stabilization of networked
control systems with random delays[J].IEEE Tran-
sactions on AutomaticControl,2005,50(8):1177-
1181.
[4] Dong Yue,Qinglong Han,James Lam.Networked-
based robust control of systems with uncer-
tainty[J].Automatica,2005,41(6):999-1007.
[5] Hai Lin,Guisheng Zhai,P.J.Antsaklis.Robust stab-
ility and disturbance attenuation analysis of a class
of networked control systems[J]. In Proceedings
of the conference on decision and control,2003,2
(10):1182-1187.
[6] Peng Chen,QingLong Han,Dong Yue.To transmmit
or not transmit:a discrete event-triggered commu-
nication Scheme for networked Takagi-Sugeno fu-
zzy systems [J],IEEE Transactions on Fuzzy Syst-
Ems,,2013,21(1):164-170.
[7] 李煒,趙莉,蔣棟年等.基于事件觸發的NCS魯棒
完整性設計[J].蘭州理工大學學報,2014,40(1):
74-79.
[8] Shen Yan,Huaichen Yan,Hongbo Shi,Hao Zhang.
controller design of event-triggered networ-
ked control systems[C].International Conference
on Mechatronics and Control,2014:1972-1976.
[9] Yanpeng Guan,Qinglong Han,Chen peng.Decentr-
alized event-triggered control for sampled-data
systems with asnchronous sampling[C].American
Conrol Conference.2013:6565-6570.
[10] Jin Zhang,Peng Chen.Synchronization of master-
slave neural networks with a decentralized event
triggered communication scheme[J].Neurocomp-
uting.2016,173:1824-1831.
[11] Xiaofeng Wang, Michael D. Lemmon. Self-
feedback control systems with finite-L2 gain
stability[J].IEEE Transactions on Automatic
Control.2009,54(3):452-467.
[12] Xiefu Jiang,Qinglong Han,Shirong Liu,Anke
Xue.A new stabilization criterion for net-
worked control systems[J].IEEE Transactions
on Automatica Control.2008,53(4):1025-1032.
[13] Park Poogyeon,Ko Jeong Wan,Jeong Changki.
Reciprocally convex approach to stability of
systems with timi-varying delay[J].Automatic.
2011,47(1):235-238.
[14] Xie Lihua.Output feedback control of syst-
ems with parameter uncertainty[J].International
Journal of Control.1996,63(4):741-750.
[15] Junlin Xiong,James Lam. Stabilization of netwo-
rked control systems with a logic ZOH[J].IEEE
Transactions on Automatic Control.2009,54(2):
358-363.