馬春燕+張晨
[摘要] 近年來,隨著神經生物學的發展,神經炎癥在抑郁癥中的作用日益受到重視,越來越多的研究發現,神經免疫異常在抑郁癥的發生過程中具有重要意義。本文就抑郁癥神經炎癥機制研究的現有進展進行綜述。
[關鍵詞] 抑郁癥;神經炎癥;細胞因子;補體
[中圖分類號] R749 [文獻標識碼] A [文章編號] 1673-7210(2017)05(b)-0033-03
[Abstract] Recently, with the development of neurobiology, the effect of neuroinflammation on depression has been highlighted. More and more research find the importance of aberrant neuroinflammation in the development of depression. In this paper, neuroinflammation mechanism of depression is to do a review.
[Key words] Depression; Neuroinflammation; Cytokine; Complement
抑郁癥是一種常見的情感性精神障礙,以顯著而持久的情緒低落,并有相應的思維和行為改變為主要特征,其高致殘率和低治愈率給社會和患者家庭帶來極為沉重的疾病負擔。基于單胺類神經遞質假說研發的抗抑郁藥物經過臨床多年實踐證明仍存在起效慢、有效率低等缺點[1-2]。近年來,隨著神經生物學的發展,神經炎癥在抑郁癥中的作用日益受到重視,越來越多的研究發現神經免疫異常在抑郁癥的發生過程中具有重要意義。本文就神經炎癥與抑郁癥的相關研究進展進行綜述。
1 神經炎癥與抑郁癥
神經炎癥是指神經系統和免疫系統之間的相互作用。由于血腦屏障的存在,神經系統一直被認為是一個免疫隔絕的系統。然而,最新研究指出神經膜周圍的纖維母細胞、巨噬細胞、樹突狀細胞和內皮細胞在組織損傷時可被激活,產生細胞因子、一氧化碳、趨化因子等免疫物質,并進一步誘導循環中的免疫細胞進入神經系統引發免疫反應或炎性損傷,主要途徑包括補體、免疫細胞和膠質細胞等[3]。補體系統激活被認為是慢性神經炎癥機制中的重要環節。神經系統中多種細胞可以表達補體成分和補體受體,而神經系統自身也可以合成補體參與多種疾病過程。補體系統不僅促發固有免疫反應,還可造成T細胞、B細胞活化,引起適應性免疫反應。補體激活方式包括經典途徑、旁路途徑和凝集素途徑,這三條途徑殊途同歸,最終形成C5轉化酶,并形成膜攻擊復合物(membrane attack complex,MAC)。補體因子H(complement factor H,CFH)是補體系統中重要的調節因子,是補體激活途徑的調節因子。Zhang等[4]發現抑郁癥患者外周血中CFH蛋白水平顯著低于正常健康人,CFH基因rs1061170位點與抑郁癥具有顯著性關聯,eQTL分析結果顯示該位點顯著影響腦內下橄欖核和枕葉皮質內CFH基因表達,提示CFH可能與抑郁癥有關。在旁路途徑中,CFH可以通過抑制C3轉化酶的組裝調控旁路途徑,避免補體系統過度激活所致的免疫病理反應,因此CFH對C3有負性調節作用。迄今已有多項報道顯示C3在抑郁癥患者中樞和外周組織中顯著升高,同時一項全基因組關聯研究(genome-wide association study,GWAS)顯示CFH基因rs3753394位點與補體C3表達之間具有顯著性關聯[5]。因此,上述研究提示補體系統可能在抑郁癥的發生過程中具有重要作用,CFH可能是抑郁癥發生的易感基因。
抑郁癥自殺者尸腦研究發現患者腦內細胞因子以及巨噬細胞、小膠質細胞和星形細胞內一氧化碳合成酶合成顯著增加[6]。細胞因子包括促炎因子,如干擾素-γ(IFN-γ)、白介素-6(IL-6)、腫瘤壞死因子-α(TNF-α)、轉化生長因子-β(TGF-β)和IL-23以及抗炎因子,如IL-4、IL-5、IL-10和IL-13。促炎因子和抗炎因子失衡在抑郁樣行為發生中具有重要作用。已有多項研究指出,抑郁癥患者外周血血清或血漿中多種細胞因子,如IL-1β、IL-2、IL-6、TNF-α和IFN-γ均顯著升高[7]。某些細胞因子升高,如IL-1β、IL-6和TNF-α見于老年性抑郁癥患者,但不見于不典型抑郁癥患者[8]。薈萃分析結果顯示抑郁癥患者體內促炎因子,如IL-1、IL-6和TNF-α水平顯著高于健康人,且與抑郁癥狀嚴重程度呈正相關[9-11]。臨床研究也指出,實驗動物經脂多糖處理后,腦內IL-1β、IL-6和TNF-α水平顯著上升,并出現抑郁樣行為,如睡眠障礙、快感缺失和動力不足等[12]。臨床藥理學已證明NMDA受體拮抗劑Ketamine對于抑郁癥的顯著療效,前扣帶皮質主要負責NMDA拮抗信號內流,同時神經影像學研究也指出前扣帶回皮質功能和結構異常在抑郁癥神經機制中的重要地位[13-14]。現有證據顯示抑郁癥患者細胞因子升高的同時往往伴有前扣帶皮質內小膠質細胞激活[15-16],提示前扣帶回皮質可能是抑郁癥神經炎性反應的易感腦區。一項針對長期使用低劑量重組人IL-2蛋白的癌癥患者的隨訪研究顯示,經過3個月的治療,80%患者抑郁水平顯著上升[17]。雖然細胞因子與抑郁癥的因果關系仍有爭議,但不可否認的是神經炎癥機制對于大腦神經可塑性的負性調節在抑郁癥發生過程中具有重要作用,同時,研究也表明細胞因子水平異常升高與譫妄和自殺風險增加有關[18]。
目前的證據顯示神經炎癥系統具有維持突觸持續聯系的作用,在生理和病理層面上控制突觸可塑性。感染、外傷以及慢性應激可誘導免疫細胞激活并分泌高水平的細胞因子和前列腺素。這些促炎因子通過神經毒性作用、損害線粒體功能造成神經營養因子下降,引起神經可塑性、神經發生和記憶異常[19-20]。例如,細胞因子引起NMDA功能異常激活可能導致神經退行性變以及認知功能障礙[21]。在突觸水平,研究顯示TNF-α上調突觸膜NMDA受體NR1亞基,引起NMDA誘發鈣離子大量釋放并提高興奮性突觸后電位,導致海馬突觸可塑性改變[22-23]。
一項最新囊括了18個臨床研究,包括583例有自殺抑郁癥患者,315例無自殺抑郁癥患者和845名健康人的薈萃分析[24]結果顯示,IL-1β和IL-6在有自殺抑郁癥患者外周血和腦組織中的水平顯著高于無自殺抑郁癥患者。體外實驗顯示有自殺抑郁癥患者外周血單核細胞IL-2生成顯著低于無自殺抑郁癥患者。有自殺抑郁癥患者腦脊液內IL-8水平顯著低于正常對照者。其他研究證據也提示IL-1β、IL-6升高以及小膠質細胞增生和單核細胞增多與自殺行為有關[25]。藥理學研究指出很多抗抑郁藥物具有抗炎作用,也間接支持炎性反應是抑郁癥的潛在病理機制[18]。
2 神經炎癥機制
炎性反應增加活性氧自由基生成,如過氧化氫、超氧化物等,損傷腦細胞和神經突觸,影響大腦功能[26],其機制在于氧自由基可誘導線粒體通透性轉換通道開放,使細胞膜去極化,導致線粒體受氧自由基損害。在分子水平上,Zhang等[27]發現線粒體復合物Ⅰ亞基NDUFV2基因啟動子rs12457810和rs12964485組成的T-C單體型與抑郁癥呈顯著性相關,提示線粒體是抑郁癥發生的易感部位。多項正電子發射型計算機斷層顯像(PET)研究顯示抑郁癥患者基底節和前額葉皮質等區域葡萄糖代謝能量減低,血液灌注減少,提示患者腦內神經元活動受限,代謝能量減少[28]。磁共振波譜(MRS)研究也顯示抑郁癥患者腦內乳酸水平升高,前額葉磷酸單脂水平升高,高能磷酸化合物減少,磷酸肌酸與無機磷酸鹽比值降低[29],提示抑郁癥患者腦內ATP功能不足。此外,抑郁癥患者外周肌肉細胞活檢結果也顯示細胞線粒體ATP生成減少[30]。因此,炎性反應可能通過增加氧自由基生成,造成線粒體ATP產能異常、跨膜電位改變、線粒體膜離子泵功能失調等一系列級聯反應,導致腦細胞功能障礙,增加抑郁癥的發生風險。
3 小結
綜上所述,神經炎癥機制可能在抑郁癥發生過程中具有重要作用。神經炎癥效應可能通過氧化應激、線粒體和能量代謝等過程導致抑郁癥相關腦區神經功能變化導致情緒控制異常。因此,抑郁癥神經炎癥機制研究將為闡明該病病因、新藥研發和指導個體化用藥提供新的理論依據。
[參考文獻]
[1] Zhang C,Wu Z,Hong W,et al. Influence of BCL2 gene in major depression susceptibility and antidepressant treatment outcome [J]. J Affect Disord,2014,155:288-294.
[2] Zhang C,Li Z,Wu Z,et al. A study of N-methyl-D-aspartate receptor gene(GRIN2B)variants as predictors of treatment-resistant major depression [J]. Psychopharmacology(Berl),2014,231(4):685-693.
[3] Del-Bel E,Bortolanza M,Dos-Santos-Pereira M,et al. l-DOPA-induced dyskinesia in Parkinson's disease:are neuroinflammation and astrocytes key elements? [J] Synapse,2016,70(12):479-500.
[4] Zhang C,Zhang DF,Wu ZG,et al. Complement factor H and susceptibility to major depressive disorder in Han Chinese [J]. Br J Psychiatry,2016,208(5):446-452.
[5] Yang X,Sun J,Gao Y,et al. Genome-wide association study for serum complement C3 and C4 levels in healthy Chinese subjects [J]. PLoS Genet,2012,8(9):e1002916.
[6] Torres-Platas SG,Cruceanu C,Chen GG,et al. Evidence for increased microglial priming and macrophage recruitment in the dorsal anterior cingulate white matter of depressed suicides [J]. Brain Behav Immun,2014,42:50-59.
[7] Tajfard M,Latiff LA,Rahimi HR,et al. Serum inflammatory cytokines and depression in coronary artery disease [J]. Iran Red Crescent Med J,2014,16(7):e17111.
[8] Craddock D,Thomas A. Cytokines and late-life depression [J]. Essent Psychopharmacol,2006,7(1):42-52.
[9] Dowlati Y,Herrmann N,Swardfager W,et al. A meta-analysis of cytokines in major depression [J]. Biol Psychiatry,2010,67(5):446-457.
[10] Passos IC,Vasconcelos-Moreno MP,Costa LG,et al. Inflammatory markers in post-traumatic stress disorder:a systematic review,meta-analysis,and meta-regression [J]. Lancet Psychiatry,2015,2(11):1002-1012.
[11] Jiang M,Qin P,Yang X. Comorbidity between depression and asthma via immune-inflammatory pathways:a meta-analysis [J]. J Affect Disord,2014,166:22-29.
[12] Tang MM,Lin WJ,Pan YQ,et al. Hippocampal neurogenesis dysfunction linked to depressive-like behaviors in a neuroinflammation induced model of depression [J]. Physiol Behav,2016,161:166-173.
[13] Chan SW,Sussmann JE,Romaniuk L,et al. Deactivation in anterior cingulate cortex during facial processing in young individuals with high familial risk and early development of depression:fMRI findings from the Scottish Bipolar Family Study [J]. J Child Psychol Psychiatry,2016,57(11):1277-1286.
[14] Holroyd CB,Umemoto A. The research domain criteria framework:the case for anterior cingulate cortex [J]. Neurosci Biobehav Rev,2016,71:418-443.
[15] Steiner J,Walter M,Gos T,et al. Severe depression is associated with increased microglial quinolinic acid in subregions of the anterior cingulate gyrus:evidence for an immune-modulated glutamatergic neurotransmission? [J] J Neuroinflammation,2011,8:94.
[16] Haroon E,Fleischer CC,Felger JC,et al. Conceptual convergence:increased inflammation is associated with increased basal ganglia glutamate in patients with major depression [J]. Mol Psychiatry,2016,21(10):1351-1357.
[17] Pizzi C,Caraglia M,Cianciulli M,et al. Low-dose recombinant IL-2 induces psychological changes:monitoring by minnesota multiphasic personality inventory(MMPI)[J]. Anticancer Res,2002,22(2A):727-732.
[18] Echeverria V,Grizzell JA,Barreto GE. Neuroinflammation:a therapeutic target of cotinine for the treatment of psychiatric disorders? [J] Curr Pharm Des,2016,22(10):1324-1333.
[19] Tong L,Prieto GA,Kramar EA,et al. Brain-derived neurotrophic factor-dependent synaptic plasticity is suppressed by interleukin-1beta via p38 mitogen-activated protein kinase [J]. J Neurosci,2012,32(49):17714-17724.
[20] Cabezas R,El-Bacha RS,Gonzalez J,et al. Mitochondrial functions in astrocytes:neuroprotective implications from oxidative damage by rotenone [J]. Neurosci Res,2012,74(2):80-90.
[21] di Penta A,Moreno B,Reix S,et al. Oxidative stress and proinflammatory cytokines contribute to demyelination and axonal damage in a cerebellar culture model of neuroinflammation [J]. PLoS One,2013,8(2):e54722.
[22] Wheeler D,Knapp E,Bandaru VV,et al. Tumor necrosis factor-alpha-induced neutral sphingomyelinase-2 modulates synaptic plasticity by controlling the membrane insertion of NMDA receptors [J]. J Neurochem,2009,109(5):1237-1249.
[23] Wall AM,Mukandala G,Greig NH,et al. Tumor necrosis factor-alpha potentiates long-term potentiation in the rat dentate gyrus after acute hypoxia [J]. J Neurosci Res,2015,93(5):815-829.
[24] Black C,Miller BJ. Meta-analysis of cytokines and chemokines in suicidality:distinguishing suicidal versus nonsuicidal patients [J]. Biol Psychiatry,2015,78(1):28-37.
[25] Steiner J,Gos T,Bogerts B,et al. Possible impact of microglial cells and the monocyte-macrophage system on suicidal behavior [J]. CNS Neurol Disord Drug Targets,2013,12(7):971-979.
[26] Daulatzai MA. Fundamental role of pan-inflammation and oxidative-nitrosative pathways in neuropathogenesis of Alzheimer's disease in focal cerebral ischemic rats [J]. Am J Neurodegener Dis,2016,5(2):102-130.
[27] Zhang Z,Ni J,Zhang J,et al. A haplotype in the 5'-upstream region of the NDUFV2 gene is associated with major depressive disorder in Han Chinese [J]. J Affect Disord,2016,190:329-332.
[28] Zhang K,Zhu Y,Wu S,et al. Molecular,functional,and structural imaging of major depressive disorder [J]. Neurosci Bull,2016,32(3):273-285.
[29] Schur RR,Draisma LW,Wijnen JP,et al. Brain GABA levels across psychiatric disorders:a systematic literature review and meta-analysis of(1)H-MRS studies [J]. Hum Brain Mapp,2016,37(9):3337-3352.
[30] Gardner A,Johansson A,Wibom R,et al. Alterations of mitochondrial function and correlations with personality traits in selected major depressive disorder patients [J]. J Affect Disord,2003,76(1-3):55-68.
(收稿日期:2017-01-16 本文編輯:李亞聰)