成源
[摘 要]基本的數(shù)學(xué)思想是蘊(yùn)藏于知識與技能中的“精華”。學(xué)生只有對知識背后隱含的數(shù)學(xué)思想了然于胸,才能做到游刃有余。對于極限思想,教師在教學(xué)相關(guān)內(nèi)容時不能以超綱為由,刻意回避,而應(yīng)找到滲透極限思想的“觸發(fā)點(diǎn)”“爆發(fā)點(diǎn)”及“落腳點(diǎn)”,培養(yǎng)學(xué)生的數(shù)學(xué)思想。
[關(guān)鍵詞]極限思想;數(shù)學(xué)思想;培養(yǎng)
[中圖分類號] G623.5 [文獻(xiàn)標(biāo)識碼] A [文章編號] 1007-9068(2017)17-0079-01
在數(shù)學(xué)學(xué)習(xí)中,當(dāng)學(xué)生把貯藏在腦海里的公式、定理、定律、經(jīng)典例題都忘卻,剩下的便是精華——數(shù)學(xué)思想與直覺經(jīng)驗。數(shù)學(xué)思想是對數(shù)學(xué)事實與理論經(jīng)過概括后產(chǎn)生的本質(zhì)認(rèn)識。下面,筆者以極限思想為例,從三個方面分析學(xué)生數(shù)學(xué)思想的培養(yǎng)。
一、以極限思想為“觸發(fā)點(diǎn)”
小學(xué)數(shù)學(xué)課程涉及集合思想、轉(zhuǎn)化思想、分類討論思想、數(shù)形結(jié)合思想等基本思想。在小學(xué)階段,極限思想的學(xué)習(xí)離不開無限思想的積累,教師應(yīng)讓學(xué)生通過相關(guān)數(shù)學(xué)知識的學(xué)習(xí),適度體會“無限”,進(jìn)而感受“極限”。為此,蘇教版小學(xué)數(shù)學(xué)教材每一冊都安排了相關(guān)內(nèi)容,以豐富學(xué)生的認(rèn)知。
通過對教材中涉及極限思想的內(nèi)容的統(tǒng)計與分析,我們可以發(fā)現(xiàn)編者的意圖——由淺入深、循序漸進(jìn)。這種教學(xué)安排非常適合小學(xué)生:學(xué)生通過計數(shù)發(fā)現(xiàn)“自然數(shù)的個數(shù)是無窮的,不存在最大的數(shù)”;通過空間想象,清楚地意識到“直線和射線是無限延長的”;通過對基礎(chǔ)數(shù)論知識的了解,深入理解“一個分?jǐn)?shù)在值不變的情況下可以變換出無限種不同的形式”……這些知識雖然繞不開無限思想,但小學(xué)生基于原有的知識和經(jīng)驗,借助特定的學(xué)習(xí)情境,能對“無限”形成理性認(rèn)知。
在教學(xué)過程中,教師要牢牢把握每個內(nèi)容的觸發(fā)點(diǎn),幫助學(xué)生從無法想象的“無限”過渡到可以研究的“極限”。“圓的面積”就是一個典型的例子。學(xué)生將圓分成若干(偶數(shù))等份,剪開后拼一拼,再經(jīng)過想象和推理,認(rèn)識到均分圓的份數(shù)越多,每份的面積越小,拼成的圖形就越接近長方形。教師還借助幾何畫板軟件,動態(tài)展示“切分越細(xì),效果越逼真”的函數(shù)變化效果圖。

三、定位極限思想的“落腳點(diǎn)”
學(xué)生學(xué)習(xí)極限思想時之所以感到困難,是因為極限思想具有高度的抽象性。因此,數(shù)學(xué)教師要在課前研讀教材,定位極限的“落腳點(diǎn)”,促使學(xué)生對極限思想的認(rèn)知從模糊轉(zhuǎn)變?yōu)榍逦础八⒊觥睒O限的“存在感”。
例如,前面提到學(xué)生通過“加碼”來理解和消化“結(jié)果等于1”,教師趁熱打鐵,設(shè)計了一個現(xiàn)場作業(yè)活動:讓一位同學(xué)分一杯水(即單位“1”),把一杯水倒出一半,再由另一個同學(xué)倒出剩下的水的一半,以此類推,直到杯中的水倒完為止。在教學(xué)中讓學(xué)生停下來動一動、想一想,可有效放緩思維速度,促使學(xué)生感悟極限思想無疑比單純講解題目更有效。
此外,運(yùn)用風(fēng)趣生動的講解藝術(shù)也是一種培養(yǎng)學(xué)生數(shù)學(xué)思想的有效策略。課后,教師可以做一個總結(jié):“你不敢想的地方不是極限,你無法操作的地方也不是極限,極限是你無法想象卻又近在眼前、觸手可及的地方。”
(責(zé)編 鐘偉芳)