袁 潔,王快社,趙 凱,王 文
(西安建筑科技大學冶金工程學院,陜西西安710055)
鈦合金攪拌摩擦焊接最新研究進展
袁 潔,王快社,趙 凱,王 文
(西安建筑科技大學冶金工程學院,陜西西安710055)
鈦合金具有密度低、比強度高,耐蝕性好,加工性能優異等優點,主要應用于航空航天、交通運輸和石油化工等領域。當鈦合金作為結構材料應用在不同領域時,傳統的熔融焊接方法會產生較大殘余應力,組織粗化,變形大,裂紋和孔隙等缺陷;而采用攪拌摩擦焊接技術可以避免傳統熔融焊接方法產生的缺陷,從而大幅度提高鈦合金焊接接頭質量。目前,鈦合金的攪拌摩擦焊接技術已成為國內外研究熱點。主要介紹攪拌摩擦焊接的原理、工藝特點,國內外關于鈦合金FSW焊接接頭的宏觀形貌、微觀組織(晶粒大小、織構)和力學性能等方面的最新研究進展,最后展望了鈦合金FSW未來的研究方向。
鈦合金;攪拌摩擦焊;微觀組織;力學性能
鈦合金具有密度小、比強度高、耐熱、耐蝕等優異性能,在航空、航天、石油化工等領域得到了廣泛應用[1-4]。鈦合金傳統焊接方法有鎢極氬弧焊、等離子弧焊、電子束焊、激光焊、電阻焊、釬焊等[5-8],但這些方法的焊接條件苛刻且工藝復雜,焊后存在較大殘余應力,變形大,組織粗化,易產生裂紋、氣孔及脆性化合物等缺陷,嚴重影響接頭質量,大大降低焊接接頭的力學性能[9]。攪拌摩擦焊接(Friction stirwelding,FSW)技術作為一種固相焊接技術,已經在鎂合金、鋁合金等低熔點合金上得到了廣泛的應用[10-15]。隨著攪拌頭工具的發展,近幾年開始對高熔點合金如銅、鋼、鎳及鈦合金的FSW展開研究[16-19]。本研究主要對國內外鈦合金FSW接頭宏觀組織、微觀組織及力學性能等進行綜述,并展望了鈦合金FSW未來的研究方向。
鈦合金FSW接頭表面形貌和橫截面的宏觀組織如圖1所示。表面光滑發亮,橫截面宏觀組織分為焊核區(Stir Zone,SZ),熱影響區(Heat Affected Zone,HAZ)和母材(Base Material,BM),而熱機械影響區(Thermo-Mechanically Affected Zone,TMAZ)的存在則存在較大的爭議[18-24]。鈦合金FSW宏觀組織的特點:一方面,鈦合金強度較高,難以發生塑性變形,塑性變形過程較復雜;另一方面,鈦合金在FSW過程中發生了相變,相變掩蓋了TMAZ或HAZ[25]。交界區較窄,通常只有幾十到幾百微米,這是因為鈦合金熱導率較低,僅為17 W/(m·K),而鋁合金的熱導率高達210 W/(m·K)。SZ呈“碗狀”形狀,且整個接頭形貌基本上沿焊縫中心對稱,焊縫兩側形貌差別較小。

圖1 Ti6Al4V FSW接頭宏觀形貌[29]Fig.1 Macro-appearance of Ti6Al4V FSW welds
鈦合金FSW接頭微觀組織的研究主要集中在相變和晶粒取向方面。李繼忠等人[26]研究了轉速對FSW TC4接頭組織的影響。當焊速為30 mm/min、轉速為150 r/min時,SZ主要為α相等軸超細晶;轉速增至200 r/min時,SZ為α相等軸超細晶和片層狀α+β的雙態組織;轉速繼續增至250 r/min,SZ全部由片層狀α+β組織組成,α等軸晶消失。王快社等人[27]研究表明,SZ組織為細密的等軸晶組織,焊縫最大溫度未超過相變溫度。王文[18]和Liu等人[24]研究結果表明,SZ組織為片層狀α+β結構,組織轉變主要為β相向片層α+β相轉變,TMAZ為等軸晶α和α+β片層的雙態組織,分析認為組織轉變受動態再結晶和相變共同作用。TC4 FSW接頭未超過相變溫度的兩種組織形態如圖2所示。

圖2 TC4焊核區TEM微觀組織[29]Fig.2 Microstructures of SZ in TC4 by FSW
由于鈦合金低的導熱系數,在厚度方向上也呈現出不同的組織特征。Yoon[28]和姬書得等人[29]研究了Ti6Al4V板材FSW接頭厚度方向上的組織,結果表明:在焊速50 mm/min、轉速300 r/min下,近焊縫表面組織由完全的片層狀β相組成,表明在該區域峰值溫度已經超過了β相變溫度;中間部分的組織由等軸的α相及片層狀的α+β晶粒組成,這個區域的峰值溫度未超過β相變溫度[18,22,24,30]。最底層的組織主要由完全等軸α相組成。當轉速逐漸下降時,近焊縫表面的完全片層狀組織范圍減小;當轉速降為225 r/min時,SZ組織全部為α等軸晶。
焊接參數直接影響焊接溫度。當焊接峰值溫度低于β相變溫度時,鈦合金FSW后的組織分為兩種,一種為等軸細晶α相,另一種為等軸細晶α相和片層狀α+β的雙態組織;當峰值溫度超過β相變溫度時,組織為完全的層狀β相。
鈦是密排六方(hcp)晶體結構,晶格對稱性較低,滑移系相對較少,在FSW過程中易形成變形織構。Zhou等人[31]研究了FSW Ti6Al4V織構演變過程,結果表明:Ti6Al4V鈦合金母材為明顯軋制織構,FSW后的SZ發生明顯的動態再結晶過程,形成{φ1=30°,φ=62°,φ2=30°}織構,且高角度晶界比例明顯提升。
Fonda等人[32]研究了近α態鈦合金FSW接頭的織構演變規律。結果表明,在低焊速下焊接接頭主要為hcp p1型剪切織構,在高焊速下主要為bcc D1型剪切織構,hcp p1型織構強度高于bcc D1型。究其原因是在高焊速下,熱量在焊縫處停留時間短,攪拌頭到焊縫剪切變形傳輸過程比較慢,所以產生了織構強度稍低的bcc D1型織構。
Liu等人[33]對于工業純鈦FSW接頭的微觀織構,如圖3所示。

圖3 EBSD測試結果[38]Fig.3 The results of EBSD[38]
結果表明,BM為明顯的軋制織構,SZ區為P1{10}<10>型剪切織構。從前進側(Advancing Side,AS)到后退側(Retreating Side,RS),P1型織構發生了轉動,AS側的[0001]α織構與焊接方向垂直,而RS側的α織構與焊接方向平行,這與Zhou[30]和Yoon等人[34]的研究結果一致。而在鎂合金中,從AS到RS的[0001]α織構并沒有發生轉動[35-36],這表明織構不僅與晶體結構有關,還與FSW過程中材料的塑性變形有重要關聯。再者,FSW接頭高角度晶界比例明顯提升,在焊接過程中伴隨著亞晶的轉動,晶粒發生了動態再結晶,晶粒顯著細化。組織演變一方面與應變和不連續動態再結晶有關,另一方面與織構誘導的晶粒匯聚有關[37-38]。
力學性能是衡量FSW接頭質量的關鍵指標,目前針對FSW鈦合金力學性能的研究主要包括顯微硬度、拉伸性能,針對疲勞性能的研究相對較少。
Fujii等人[39]研究了工業純鈦FSW后SZ區晶粒尺寸、顯微硬度和拉伸性能的關系,如表1所示。隨著焊速的提升,SZ區晶粒尺寸呈減小趨勢,顯微硬度值呈增大趨勢。同時,隨著焊速的增大,抗拉強度(Ultimate Tensile Strength,UTS)先增大后減小(見圖4),當焊速為300 mm/min時,雖然晶粒得到細化,但熱輸入量的降低使塑性變形不充分,導致UTS減小。
Zhang等人[22]對Ti6Al4V FSW接頭的力學性能進行了評價,如圖5所示。拉伸試驗分為兩部分,一種拉伸試樣平行段包含整個焊縫,另一種拉伸試樣平行段只包含SZ區。結果表明:第一種拉伸試樣的UTS、YS(屈服強度)都達到BM的95%以上,伸長率可達55%。隨著轉速的增大,α相和β相尺寸增大,完全片層狀組織使得強度和伸長率略有降低。第二種拉伸試樣由于SZ為細小的α相,相比BM, UTS與屈服強度增約15%,伸長率增約42%。Liu等人[24,40-41]對TC4 FSW接頭力學性能分析表明,FSW接頭UTS均能達到BM的92%以上,斷裂位置位于SZ區,這是因為在FSW過程中經歷了回復與再結晶,材料發生軟化。

圖4 不同參數條件下焊接接頭的抗拉強度[39]Fig.4 Tensile strength of the samples at different welding speeds

表1 不同焊接條件Ti6Al4V焊接接頭的晶粒尺寸與硬度關系表[44]Table 1 Summary of the grain size and hardness of the samples welded under different conditions

圖5 不同轉速下的拉伸性能[27]Fig.5 Effect of rotational speed on tensile properties[27]
Edwards等人[23,42-43]對Ti6Al4V FSW的研究結果表明,FSW后接頭疲勞性能相比BM降低了50%,對焊縫進行熱處理后相比BM提升了約20%,同時UTS、YS均得到提升,故對于鈦合金FSW接頭,選擇合理的焊后熱處理能夠提升接頭的疲勞壽命。
分析總結目前關于鈦合金FSW力學性能的相關文獻,鈦合金FSW力學性能呈現以下特點:(1)鈦合金FSW后力學性能指標良好,UTS最高能達到BM的99%以上;(2)在焊縫無缺陷狀態下,通過合理的熱處理制度,UTS、YS可進一步提高;(3)FSW后晶粒得到細化,高角度晶界比例增加,有利于材料強塑性的結合。總之,鈦合金FSW后的力學性能與多種因素有關,包括晶粒大小,α與β相含量、尺寸及分布,晶粒取向的變化。
鈦合金FSW的開發和應用剛剛起步,具有廣闊的應用前景。對鈦合金FSW的研究應從以下方面深入研究:(1)鈦合金FSW組織演變機制及控制;(2)鈦合金FSW目前主要集中于薄板的研究,應實現不同板厚的連接,滿足實際工業化應用;(3)對于鈦合金FSW的力學性能,除考慮到晶粒尺寸與相變外,還要深入研究織構對接頭力學性能的影響,同時開展超塑性變形機制的研究,以擴大鈦合金作為結構件的應用范圍;(4)開展FSW接頭腐蝕性能研究,滿足在腐蝕工況條件下的應用。
[1] 錢九紅.航空航天用新型鈦合金的研究發展及應用[J].稀有金屬,2000,24(3):218-223.
[2]李梁,孫健科,孟祥軍,等.鈦合金的應用現狀及發展前景[J].鈦工業進展,2004,21(5):19-24.
[3] 朱知壽.我國航空用鈦合金技術研究現狀及發展[J].航空材料學報,2014,34(4):44-50.
[4] 金和喜,魏克湘,李建明,等.航空用鈦合金研究進展[J].中國有色金屬報,2015,25(2):280-292.
[5]程東海,黃繼華,林海凡,等.TC4鈦合金激光拼焊接頭顯微組織及力學性能分析[J].焊接學報,2009,30(2):103-106.
[6]BALASUBRAMANIAN T S,BALASUBRAMANIAN V,MUTHUMANIKKAM M A,等.焊接方法對Ti-6Al-4V合金接頭微觀組織及拉伸和沖擊性能的影響[J].中國有色金屬學報(英文版),2011(6):1253-1262.
[7]WU B,LI J W,TANG Z Y.Study on the Electron Beam Welding Process of TC4 Titanium Alloy[J].Rare Metal Materials and Engineering,2014,43(4):786-790.
[8]MA X Y,GONG S L,ZHANG J X,et al.Formation microstructure and mechanical properties of double-sided laser beam welded Ti-6Al-4V T-joint[J].Transactions of Nonferrous Metals Society of China,2016,26(3):729-735.
[9] 高飛.鈦及鈦合金材料的焊接技術[J].石油化工建設,2006,28(4):38-42.
[10]KARTSONAKIS I A,RAGATOGIANNIS D A,KOUMOULOS E P,et al.Corrosion behavior of dissimilar friction stir welded aluminum alloys reinforced with nanoadditives[J]. Materials&Design,2016,102(15):56-57.
[11]WOO W,CHOO H,BROWN D W,et al.Texture variation and its influence on the tensile behavior of a friction-stir processed magnesium alloy[J].Scripta Materialia,2006,11(54):1859-1864.
[12]RAO H M,JORDON J B,GHAFFARI B,et al.Fatigue and fracture of friction stir linear welded dissimilar aluminumto-magnesium alloys[J].International Journal of Fatigue,2016,82(3):737-747.
[13]MIRONOV S,ONUMA T,SATO Y S,et al.Microstructure evolution during friction-stir welding of AZ31 magnesium alloy[J].Acta Materialia,2015(100):301-312.
[14]BABU S R,SENTHIL V S,KARUNAMOORTHY L,et al. Investigation on the effect of friction stir processing on the super-plastic forming of AZ31B alloy[J].Material Design,2014,53(1):338-348.
[15]NARESH N,SATISH V K,SATYAM S.A bottom-up approach for optimization of friction stir processing parameters;a study on aluminum 2024-T3 alloy[J].Material Design,2015(65):127-138.
[16]XUE P,KOMIZO Y,UEJI R,et al.Enhanced mechanical properties in friction stir welded low alloy steel joints via structure refining[J].Materials Science&Engineering A,2014(606):322-329.
[17]XUE P,XIAO B L,Ma Z Y.Achieving ultrafine-grained structure in a pure nickel by friction stir processing with additional cooling[J].Materials and Design,2014,56(4):848-851.
[18]王文,李瑤,王慶娟,等.TC4鈦合金FSW接頭組織轉變特征[J].稀有金屬材料與程,2014,43(5):1143-1147.
[19]SU J Q,NELSON T W,MCNELLEY T R,et al.Development of nanocrystalline structure in Cu during friction stir processing(FSP)[J].Materials Science and Engineering A,2011,528(16-17):5458-5464.
[20]RAMIREZ A J,JUHAS M C.Microstructural Evolution in Ti-6Al-4V Friction Stir Welds[J].Materials Science Forum,2003(426-432):2999-3004.
[21]LEE W B,LEE C Y,CHANG W S,et al.Microstructural investigation of friction stir welded pure titanium[J].Mat-erials Letters,2005,59(26):3315-3318.
[22]ZHANG Y,SATO Y S,KOKAWA H,et al.Microstructural characteristics and mechanical properties of Ti-6Al-4V friction stir welds[J].Materials Science and Engineering:A,2008,485(1-2):448-455.
[23]EDWARDS P,RAMULU M.Investigation of microstructure surface and subsurface characteristics in titanium alloy friction stir welds of varied thicknesses[J].Science and Technology of Welding and Joining,2009,14(5):476-483,488.
[24]LIU H J,ZHOU L.Microstructural zones and tensile characteristics of friction stir welded joint of TC4 titanium alloy [J].Transaction Nonferrous Metal Society of China,2010,20(10):1873-1878.
[25]趙強,王玉,王建濤.鈦合金FSW接頭的微觀組織分析[J].航天制造技術,2006(5):42-46,56.
[26]李繼忠,董春林,欒國紅,等.TC4鈦合金攪拌摩擦焊焊縫成形及微觀組織研究[J].航空制造技術,2013,436(16):160-163.
[27]王快社,馬宏剛,王文,等.TA2工業純鈦表面攪拌摩擦加工組織及性能[J].稀有金屬材料與工程,2011,40(9):1530-1533.
[28]YOON S,UEJI R,FUJII H.Effect of rotation rate on microstructure and texture evolution during friction stir welding of Ti6Al4V plates[J].Materials Characterization,2015(106):352-358.
[29]姬書得,溫泉,馬琳,等.TC4鈦合金攪拌摩擦焊厚度方向的顯微組織[J].金屬學報,2015,51(11):1391-1399.
[30]ZHOU L,LIU H J,LIU P,et al.The stir zone microstructure and its formation mechanism in Ti-6Al-4V friction stir welds[J].Scripta Materialia,2009,61(6):596-599.
[31]ZHOU L,LIU H J,WU L Z.Texture of friction stir welded Ti6Al4V alloy[J].Transactions of Nonferrous Metals Society of China,2014,24(2):368-372.
[32]FONDA R W,KNIPLING K E.Texture development in near-α Ti friction stir welds[J].Acta Materialia,2010,58(9):6452-6463.
[33]LIU F C,LIAO J,GAO Y,et al.Influence of texture on strain localization in stir zone of friction stir welded titanium[J].Journal of Alloys and Compounds,2015(626):304-308.
[34]YOON S,UEJI R,FUJII H.Microstructure and texture distribution of Ti-6Al-4V alloy joints friction stir welded below transus temperature[J].Journal of Materials Processing Technology,2016(229):390-397.
[35]YANG Q,FENG A H,XIAO B L,et al.Influence of texture on super plastic behavior of friction stir processed ZK60 magnesium alloy[J].Materials Science and Engineering A,2012,556(9):671-677.
[36]LIU D J,X R L,LI Z Y,et al.The activation of twinning and texture evolution during bending of friction stir welded magnesium alloys[J].Materials Science and Engineering A,2015(646):145-153.
[37]MIRONOV S,SATO Y S,KOKAWA H.Development of grain structure during friction stir welding of pure titanium [J].Acta Materialia,2009,57(15):4519-4528.
[38]WU L H,WANG D,XIAO B L,et al.Microstructural evolution of the thermomechanically affected zone in a Ti6-Al4V friction stir welded joint[J].Scripta Materialia,2014(78-79):17-20.
[39]FUJII H,SUN Y F,KATO H,et al.Investigation of welding parameter dependent microstructure and mechanical properties in friction stir welded pure Ti joints[J].Materials Science and Engineering A,2010,527(15):3386-3391.
[40]ZHOU L,LIU H J,LIU Q W.Effect of rotation speed on microstructure and mechanical properties of Ti-6Al-4V friction stir welded joints[J].Materials and Design,2010,31(5):2631-2636.
[41]LIU H J,ZHOU L,LIU Q W.Microstructural characteristics and mechanical properties of friction stir welded joints of Ti-6Al-4V titanium alloy[J].Materials and Design,2010,31(3):1650-1655.
[42]EDWARDS P,RAMULU M.Fatigue performance of Friction Stir Welded Ti-6Al-4V subjected to various post weld heat treatment temperatures[J].International Journal of Fatigue,2015(75):19-27.
[43]EDWARDS P,RAMULU M.Identification of process parameters for friction stir welding Ti6Al4V[J].Journal of Engineering Materials and Technology,2010,132(3):61-78.
[44]EDWARDS P,RAMULU M.Effect of process conditions on super plastic forming behavior in Ti6Al4V friction stir welds[J].Science and Technology of Welding and Joining,2009,14(7):669-680.
Latest research progress of friction stir welding of titanium alloys
YUAN Jie,WANG Kuaishe,ZHAO Kai,WANG Wen
(College of Metallurgy Engineering,Xi'an University of Architecture and Technology,Xi'an 710055,China)
Titanium alloys with some advantages of low density,high specific strength,good corrosion resistance and excellent processing performance are mainly used in the aerospace,transportation,petrochemical and other fields.When using titanium alloys as structural materials in different fields,the traditional fusion welding method will produce a larger residual stress,microstructure coarsening,large deformation,cracks,pores and other defects,while the friction stir welding(FSW)technology can avoid these defects,thus sharply improves the quality of the welded joints of titanium alloys.In addition,the FSW technology of the titanium alloy has become a research focus.In this paper,the theory and technology characteristics of FSW are introduced,and the latest research progress of the welded joints in FSW for titanium alloys at home and abroad is also introduced from the aspects of the macrostructure,microstructure(grain size,texture)and mechanical properties.And the further trends of FSW of titanium alloys are discussed.
titanium alloys;friction stir welding;microstructure;mechanical properties
TG457.19
C
1001-2303(2017)05-0067-06
10.7512/j.issn.1001-2303.2017.05.14
2017-02-10;
2017-02-23
國家自然科學基金(U1360105);國家自然科學基金(51574192)
袁 潔(1991—),女,在讀碩士,主要從事攪拌摩擦焊接的研究工作,E-mail:yuanjxauat@126.com。
本文參考文獻引用格式:袁潔,王快社,趙凱,等.鈦合金攪拌摩擦焊接最新研究進展[J].電焊機,2017,47(05):67-72.