999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

Multiplicatively weighted Harary indexof some graph operations

2017-05-18 02:23:03WENYanqingLIUBaoliangANMingqiang
關(guān)鍵詞:大學(xué)

WEN Yanqing, LIU Baoliang, AN Mingqiang

(1.College of Mathematics and Computer Science, Shanxi Datong University, Datong 037009, Shanxi Province, China;2.College of Science, Tianjin University of Science and Technology, Tianjin 300457, China)

Multiplicatively weighted Harary indexof some graph operations

WEN Yanqing1, LIU Baoliang1, AN Mingqiang2*

(1.College of Mathematics and Computer Science, Shanxi Datong University, Datong 037009, Shanxi Province, China;2.College of Science, Tianjin University of Science and Technology, Tianjin 300457, China)

multiplicativelyweightedHararyindex;Hararyindex;tensorproduct;strongproduct;wreathproduct

0 Introduction

Allgraphsconsideredinthispaperarefiniteundirectedsimpleconnectedgraphs.LetG=(V(G),E(G)) be a graph with vertex setV(G) and edge setE(G). LetδG(v) be the degree of a vertexvinGanddG(u,v) be the distance between two verticesuandvinG. When the graph is clear from the context, we will omit the subscriptGfrom the notation. For other undefined terminology and notations from graph theory, the readers are referred to[1].

A topological index is a number related to a graph invariant under graph isomorphism. Obviously, the number of vertices and edges of a given graphGare topological indices ofG. One of the oldest and well-studied distance-based topological index is the Wiener numberW(G), also termed as Wiener index in chemical or mathematical chemistry literature, which is defined as the sum of distances over all unordered vertex pairs inG[2], namely,

ThisformulawasintroducedbyHOSOYA[3],althoughtheconcepthasbeenintroducedbylaterWIENER.However,theapproachbyWIENERisapplicableonlytoacyclicstructures,whilstHOSOYA’SmatrixdefinitionallowedtheWienerindextobeusedforanystructure.

Anotherdistance-basedgraphinvariant,definedby[4-5]inafullyanalogousmannertoWienerindex,istheHararyindex,whichisequaltothesumofreciprocaldistancesoverallunorderedvertexpairsinG, that is,

In1994,DOBRYNINetal[6]andGUTMAN[7]independentlyproposedavertex-degree-weightedversionofWienerindexcalleddegreedistanceorSchultzmoleculartopologicalindex,whichisdefinedforagraphGas

Similarly,theGutmanindexisputforwardin[7]andcalledtheretheSchultzindexofthesecondkind,forwhichthenameGutmanindexhasalsosometimesbeenused[8].Itisdefinedas

Theinterestedreadersmayconsult[9-11]forWienerindex, [5]forHararyindex, [12-13]fordegreedistanceand[14-15]forGutmanindex.

AlthoughHararyindexisnotwellknowninthemathematicalchemistrycommunity,itarisesinthestudyofcomplexnetworks.Letndenote the number of vertices ofG. DividingH(G) byn(n-1), we obtain a normalization ofH(G), which is called the efficiency ofG[16]. The reciprocal value of the efficiency is called the performance ofG[17]. For a given network, both efficiency and performance afford a uniform way to express and quantify the small-world property. Since the strength of interactions between nodes in a network is seldom properly described by their topological distances, one needs to consider both the weighted versions of efficiency and performance.

In order to close the gap between the two research communities by drawing their attention to a generalization of a concept, which gives more weight to the contributions of pairs of vertices of high degrees. Recently, ALIZADEH et al[18]introduced an invariant, named additively weighted Harary index, which is defined as

Somebasicmathematicalpropertiesofthisindexwereestablished[18]andtheirbehaviorunderseveralstandardgraphproductswereinvestigatedthere.

Itisknownthattheintuitiveideaofpairsofcloseatomscontributingmorethanthedistantonesisdifficulttocaptureintopologicalindices.Apossiblyusefulapproachcouldbeusedtoreplacetheadditiveweightingofpairsbythemultiplicativeone,thusgivingrisetoanewinvariant,namedmultiplicativelyweightedHararyindex[18]:

Evidently,theadditively(resp.multiplicatively)weightedHararyindexisrelatedtotheHararyindexinthesamewayasthedegreedistance(resp.Gutmanindex)isrelatedtotheWienerindex.

Veryrecently,PATTABIRAMANetal[19]gavetheexactformulaefortheadditivelyweightedHararyindexoftensorproductG×Km0,m1,…,mr-1and the strong productGKm0,m1,…,mr-1, whereKm0,m1,…,mr-1is the complete multipartite graph with partite sets of sizesm0,m1,…,mr-1.

In this paper, we continue this program to the multiplicatively weighted Harary index, and the exact formulae for the multiplicatively weighted Harary index of tensor productG×Kr, the strong productG□×Krand the wreath productG1°G2in terms of other graph invariants including additively weighted Harary index, Harary index, the first and the second Zagreb indices, and the first and the second Zagreb coindices, are obtained, whereKris the complete graph. Additionally, we apply our results to compute the multiplicatively weighted Harary index of open fence and closed fence graphs.

The paper is organized as follows. In section 1, we give some necessary definitions. In section 2 to 4, we present our main results and give some corresponding examples, respectively.

1 Preliminaries

1.1 Some definitions

For a given graphG, its first and second Zagreb indices are defined as follows:

ThefirstZagrebindexcanbealsoexpressedasasumoveredgesofG,

FortheproofofthisfactandmoreinformationonZagrebindices,weencouragetheinterestedreaderto[20].

ThefirstandthesecondZagrebcoindicesofagraphGare defined as follows[21]:

LetKn,CnandPndenote then-vertex complete graph, cycle and path, respectively. We callC3a triangle.

1.2 Product graphs

Now, we introduce three standard types of product graphs that we consider in this paper. For two simple graphsGandH, their tensor product denoted byG×H, has vertex setV(G)×V(H) in which (g1,h1) and (g2,h2) are adjacent wheneverg1g2is an edge inGandh1h2is an edge inH. Note that ifGandHare connected graphs, thenG×His connected only if at least one of the graph is nonbipartite. The strong product of graphsGandH, denoted byG□×H, is the graph with vertex setV(G)×V(H)={(u,v):u∈V(G),v∈V(H)} and (u,x)(v,y) is an edge whenever (i)u=vandxy∈E(H), or (ii)uv∈E(G) andx=y, or (iii)uv∈E(G) andxy∈E(H). Similarly, the wreath product (also known as the composition) of the graphsGandH, denoted byG°H, has vertex setV(G)×V(H) in which (g1,h1)(g2,h2) is an edge wheneverg1g2∈E(G), org1=g2andh1h2∈E(H). The tensor product of graphs has been extensively studied in relation to the areas such as graph colorings, graph recognition, decompositions of graphs, and design theory, see [22-26].

For more information about graph products, please see monograph[25]. There is a growing corpus of literature concerned with the study of graph invariants of tensor product, Cartesian product and strong product[27-29].

2 Multiplicatively weighted Hararyindex of tensor product of graphs

LetGbe a connected graph withV(G)={v0,v1,…,vn-1} andV(Kr)={u1,u2,…,ur-1}. For convenience, letxijdenote the vertex (vi,uj) ofG×Kr. The following lemma, which follows easily from the properties and structure ofG×Kr, is used in the proof of our main result in this section.

Lemma 1 LetGbe a connected graph onn≥2 vertices andxij,xkpbe any pair vertices of the graphG′=G×Kr, wherer≥3.

(i)Ifvivk∈E(G), then

dG′(xij,xkp)=

(ii)Ifvivk?E(G), thendG′(xij,xkp)=dG(vi,vk).

(iii)dG′(xij,xip)=2.

Lemma 2 LetGbe a connected graph and letG′=G×Kr. Then the degree of a vertex (vi,uj) inG′ isδG′((vi,uj))=δG(vi)(r-1).

Now, we present the exact formulae for the multiplicatively weighted Harary index ofG×Kr.

Theorem 1 LetGbe a connected graph withn≥2 vertices andE2be the set of edges ofGwhich do not lie on any triangle of it. Then

wherer≥3.

Proof Let us denoteG′=G×Kr. Obviously,

(1)

whereA1toA3are the sums of the above terms, in order. In what follows, we computeA1toA3of (1), separately.

(2)

To do this, originally we calculate

LetE1={uv∈E(G)|uvis on a triangle ofG} andE2=E(G)-E1.

by lemmas 1 and 2,

The above formula=

sincedG(vi,vk)=1,ifvivk∈E1andvivk∈E2,

(3)

since each edgevivkofGis being counted twice in the sum, that is,vivkandvkvi.

Now summing (3) overj=0,1,…,r-1, we have

(4)

2r(r-1)3HM(G), by lemmas 1 and 2.

(5)

Combining(2), (4) and (5) with (1), we obtain

By theorem 1, we have the following corollaries.

Combiningtheaboveknownresultsandcorollaries1and2,immediately,wecanobtaintheexplicitmultiplicativelyweightedHararyindexofthefollowinggraphs:

Example 1

(c)Forn≥2,r=3,HM(Cn×Kr)=3r(5r3-13r2+11r-3).

3 Multiplicatively weighted Hararyindex of strong product of graphs

In this section, we obtain the multiplicatively weighted Harary index ofG□×Kr. LetGbe a connected graph withV(G)={v0,v1,…,vn-1} andV(Kr)={u1,u2,…,ur-1}. For convenience, letxijdenote the vertex (vi,uj) ofG□×Kr. Firstly, we give the following lemma, which follows directly from the properties and structure ofG□×Kr, is used in the proof of our main result in this section.

Lemma 3 LetGbe a connected graph and letG′=G□×Kr. Then

(i)For any pair of verticesxij,xkp∈V(G′),dG′(xij,xip)=1 anddG′(xij,xkp)=dG(vi,vk).

(ii)The degree of a vertex (vi,uj) inG′ isδG′((vi,uj))=rδG(vi)+(r-1).

Theorem 2 LetGbe a connected graph withnvertices andmedges. Then

Proof Let us denoteG′=GKr. Obviously,

(6)

whereA1,A2andA3are the sums of the above terms, in order.

In what follows, we calculateA1,A2andA3of (6), separately.

2r(r-1)δG(vi))=

r3(r-1)M1(G)+nr(r-1)3+

4mr2(r-1)2,by lemma 3.

(7)

2r3HM(G)+2r2(r-1)HA(G)+

2r(r-1)2H(G).

(8)

2r3(r-1)HM(G)+2r2(r-1)2HA(G)+

2r(r-1)3H(G).

(9)

Combining (7)~(9) with (6), we get

Asanapplication,wepresentformulaeformultiplicativelyweightedHararyindexofopenandclosedfences,Pn□×K2andCn□×K2.

4 Multiplicatively weighted Hararyindex of wreath product of graphs

In this section, we give the multiplicatively weighted Harary index ofG1°G2. LetG1andG2be two connected graphs withV(G1)={v0,v1,…,vn1-1} andV(G2)={u0,u1,…,un2-1}. For convenience, letxijdenote the vertex (vi,uj) ofG1°G2. The following lemma, which follows easily from the properties and structure ofG1°G2, is used in the proof of our main result in this section.

Lemma 4 LetG1andG2be two connected graphs and letG′=G1°G2. Then the degree of a vertex (vi,uj) inG′ isδG′((vi,uj))=n2δG1(vi)+δG2(uj).

Theorem 3 LetG1andG2be two connected graphs. The number of vertices and edges of graphGiis denoted byniandeirespectively fori=1,2. Then we have

H(G1)(M1(G2)+2M2(G2)+

Proof Let us denoteG′=G1°G2. Obviously,

(10)

whereA1toA3are the sums of the above terms, in order.

In what follows, we computeA1,A2,A3of (10), separately.

since each row induces a copy ofG2and

dG′(xij,xip)=1 ifujup∈E(G2) and

dG′(xij,xip)=2 ifujup?E(G2).

(11)

since the distance between a pair of vertices in a column is the same as the distance between the corresponding vertices of other column.

(12)

sincedG′(xij,xkp)=dG1(vi,vk) for alliandk, and further the distance between the corresponding vertices of the layers is counted inA2,

(13)

Combining (11)~(13) with (10), we get the desired result.

This completes the proof.

Using theorem 2, we have the following corollary.

Corollary 3 LetG1be a connected graph andG2be a connectedk-regular graph. The number of vertices and edges of graphGiis denoted byniandeirespectively fori=1,2. Then, we have

2e2)HA(G1)+H(G1)(M1(G2)+

[1] BONDY J A, MURTY U S R. Graph Theory with Applications, Macmillan[M]. London: Elsevier, 1976.

[2] WIENER H. Structural determination of paraffin boiling point[J]. J Amer Chem Soc,1947,69:17-20.

[3] HOSOYA H. A newly proposed quantity characterizing the topological nature of structural isomers of saturated hydrocarbons[J]. Bull Chem Soc Jpn,1971,44:2332-2339.

[4] IVANCIUC O, BALABAN T S, BALABAN A T. Reciprocal distance matrix, related local vertex invariants and topological indices[J]. J Math Chem,1993(12):309-318.

[6] DOBRYNIN A A, KOCHETOVA A A. Degree distance of a graph: A degree analogue of the Wiener index[J]. J Chem Inf Comput Sci,1994,34:1082-1086.

[7] GUTMAN I. Selected properties of the Schultz molecular topogical index[J]. J Chem Inf Comput Sci,1994,34:1087-1089.

[8] TODESCHINI R, CONSONNI V. Handbook of Molecular Descriptors[M]. Weinheim:Wiley-VCH,2000.

[9] DOBRYNIN A A, ENTRINGER R, GUTMAN I. Wiener index of trees: Theory and applications[J]. Acta Appl Math,2001,66:211-249.

[10] GUTMAN I. A property of the Wiener number and its modifications[J]. Indian J Chem A,1997,36:128-132.

[11] GUTMAN I, RADA J, ARAUJO O. The Wiener index of starlike trees and a related partial order[J]. Match Commun Math Comput Chem,2000,42:145-154.

[13] TOMESCU I. Ordering connected graphs having small degree distances[J]. Discrete Appl Math,2010,158:1714-1717.

[14] FENG L, LIU W. The maximal Gutman index of bicyclic graphs[J]. MATCH Commun Math Comput Chem, 2011,66:699-708.

[15] MUKWEMBI S. On the upper bound of Gutman index of graphs[J]. MATCH Commun Math Comput Chem,2012,68:343-348.

[16] LATORA V, MARCHIORI M. Efficient behavior of small-world networks[J]. Phys Rev Lett,2001,87:198701.

[17] MARCHIORI M, LATORA V. Harmony in the small-world[J]. Physica A, 2000,285:539-546.

[18] ALIZADEH Y, IRANMANESH A, DOT. Additively weighted Harary index of some composite graphs[J]. Discrete Math, 2013,313:26-34.

[19] PATTABIRAMAN K, VIJAYARAGAVAN M. Reciprocal degree distance of product graphs[J]. Discrete Appl Math, 2014,179:201-213.

[22] ALON N, LUBETZKY E. Independent set in tensor graph powers[J]. J Graph Theory, 2007,54:73-87.

[23] ASSAF A M. Modified group divisible designs[J]. Ars Combin, 1990,29:13-20.

[25] IMRICH W, KLAV?AR S. Product Graphs: Structure and Recognition[M]. New York, John Wiley and Sons,2000.

[26] MAMUT A, VUMAR E. Vertex vulnerability parameters of Kronecker products of complete graphs[J]. Inform Process Lett,2008,106:258-262.

[27] HOJI M, LUO Z, VUMAR E. Wiener and vertex PI indices of Kronecker products of graphs[J]. Discrete Appl Math,2010,158:1848-1855.

[28] KHALIFEH M H, YOUSERI-AZARI H, ASHRAFI A R. Vertex and edge PI indices of Cartesian product of graphs[J]. Discrete Appl Math,2008,156:1780-789.

[29] PATTABIRAMAN K, PAULRAJA P. On some topological indices of the tensor product of graphs[J]. Discrete Appl Math,2012,160:267-279.

倍乘賦權(quán)Harary指標(biāo);Harary指標(biāo); 張量積; 強(qiáng)積; 圈積

O

A

1008-9497(2017)03-253-09

Foundation item:Supported by the Doctoral Scientific Research Foundation of Shanxi Datong University (2015-B-06).

10.3785/j.issn.1008-9497.2017.03.001

Received date:October 16,2015.

About the author:WEN Yanqing(1980-),ORCID:http://orcid.org/0000-0002-9573-7245,female, doctoral student, lecture, the field of interest are reliability and graph theory, E-mail:oryqwen@163.com.

*Corresponding author, ORCID:http://orcid.org/0000-0002-1105-750X,E-mail:anmq@tust.edu.cn.

溫艷清1, 劉寶亮1, 安明強(qiáng)2(1.山西大同大學(xué) 數(shù)學(xué)與計(jì)算機(jī)科學(xué)學(xué)院, 山西 大同 037009; 2. 天津科技大學(xué) 理學(xué)院,天津 300457)

若干運(yùn)算圖的倍乘賦權(quán)Harary指標(biāo).浙江大學(xué)學(xué)報(bào)(理學(xué)版),2016,44(3):253-260,280

猜你喜歡
大學(xué)
“留白”是個(gè)大學(xué)問
《大學(xué)》征稿簡則
大學(xué)(2021年2期)2021-06-11 01:13:48
《大學(xué)》
大學(xué)(2021年2期)2021-06-11 01:13:12
48歲的她,跨越千里再讀大學(xué)
海峽姐妹(2020年12期)2021-01-18 05:53:08
我的大學(xué),我來啦!
文苑(2020年8期)2020-09-09 09:30:16
大學(xué)求學(xué)的遺憾
訂正里的大學(xué)問
午睡里也有大學(xué)問
工大學(xué)人
考上大學(xué)以后悔婚
主站蜘蛛池模板: 亚洲精品国产综合99久久夜夜嗨| 欧美一区二区福利视频| 久久综合干| 全午夜免费一级毛片| 在线精品亚洲国产| 亚洲美女高潮久久久久久久| 91po国产在线精品免费观看| 无码专区在线观看| 国产自产视频一区二区三区| 一级一毛片a级毛片| 一区二区三区精品视频在线观看| 国产aⅴ无码专区亚洲av综合网| 在线观看国产精品第一区免费| 国产精品熟女亚洲AV麻豆| 欧美日韩国产在线观看一区二区三区| 色噜噜综合网| 欧洲免费精品视频在线| 日本高清视频在线www色| 亚洲天堂精品在线观看| 国产高清在线精品一区二区三区| 中文字幕调教一区二区视频| 区国产精品搜索视频| 日韩一级毛一欧美一国产| 亚洲浓毛av| 国产成人综合亚洲网址| 欧美性久久久久| 亚洲欧美一区二区三区蜜芽| 国产精品区网红主播在线观看| 九九视频免费看| 国产精品人成在线播放| 国产精品香蕉在线| 无码乱人伦一区二区亚洲一| 国产精品白浆在线播放| 视频二区国产精品职场同事| 激情综合婷婷丁香五月尤物| 黄色网在线免费观看| 日本三级精品| 亚洲美女高潮久久久久久久| 欧美日韩国产在线人| 国产一区二区三区日韩精品| 亚洲AV成人一区二区三区AV| 伊人91在线| 在线看国产精品| 国产精品微拍| 青青草一区二区免费精品| 亚洲综合狠狠| 国产交换配偶在线视频| 国产91透明丝袜美腿在线| 久一在线视频| 91香蕉视频下载网站| 亚洲精品无码在线播放网站| 精品天海翼一区二区| 亚洲人成人无码www| 沈阳少妇高潮在线| 在线看片免费人成视久网下载| 国产在线精品网址你懂的| 日韩黄色在线| 尤物午夜福利视频| 国产欧美视频综合二区 | 蜜桃臀无码内射一区二区三区 | 凹凸国产熟女精品视频| 91九色国产在线| 國產尤物AV尤物在線觀看| 国产高清不卡| 国产美女一级毛片| 真人高潮娇喘嗯啊在线观看| 大香伊人久久| 国产真实二区一区在线亚洲| 99精品一区二区免费视频| 久久精品最新免费国产成人| 欧美成人影院亚洲综合图| 精品国产美女福到在线直播| a网站在线观看| 天堂va亚洲va欧美va国产| 国产剧情一区二区| 亚洲性一区| 欧美日韩国产在线人| 国产成人无码播放| 不卡视频国产| 国产偷倩视频| 99精品福利视频| 先锋资源久久|