許振,劉志強,郭慶枝,孫莉
(濱州醫學院附屬醫院,山東濱州256600)
maspin基因在腫瘤淋巴管生成中的調控作用機制研究進展
許振,劉志強,郭慶枝,孫莉
(濱州醫學院附屬醫院,山東濱州256600)
腫瘤淋巴管生成是非常復雜的過程,VEGF-C、VEGF-D、Ang、COX-2及腫瘤慢性炎癥微環境在腫瘤淋巴管生成中起重要作用。maspin基因是一種抑癌基因,近期研究表明maspin可調控腫瘤微淋巴管生成過程,可能是通過調控VEGF-C及VEGF-D表達、調控Ang表達、調控COX-2表達、調節腫瘤慢性炎癥微環境實現的。
maspin基因;腫瘤;淋巴結轉移;淋巴管;血管內皮生長因子
腫瘤淋巴管生成是一個十分復雜的過程。目前多數研究認為,腫瘤組織新生淋巴管是由先前存在于組織中的淋巴管通過“出芽”的方式生成的[1],但也有學者認為腫瘤微淋巴管及腫瘤微血管均來源于原始靜脈[2],雖然其生成方式尚有爭論,但具體生成過程均由多種因子參與調控,目前發現的因子包括VEGF-C、VEGF-D、血管內皮生長因子受體3(VEGFR-3)、成纖維細胞生長因子-2(FGF-2)、肝細胞生長因子(HGF)、胰島素生長因子(IGFs)、血管生成素(Ang)等,其中VEGF-C及VEGF-D被認為是腫瘤淋巴管生成中最重要的調控因子。研究[3,4]證實Ang、HGF對腫瘤新生血管形成也起到促進作用。maspin基因是絲氨酸蛋白酶抑制劑的一員,研究發現其對乳腺癌、前列腺癌等腫瘤的生長、侵襲、轉移有明顯抑制作用,增強腫瘤細胞對凋亡誘導的敏感性[5]。maspin基因能抑制新生血管生成,降低腫瘤新生血管密度[6~8]。已有多項研究[6,9,10]表明maspin是一個多功能的抑癌基因,能夠減弱腫瘤細胞的增殖和侵襲能力、抑制腫瘤血管生成。目前,maspin基因對腫瘤微淋巴生成的作用成為新的研究熱點[11]。隨著對腫瘤微淋巴管相關研究的不斷深入,許多學者發現maspin基因表達與肺小細胞癌、宮頸癌、胃癌的淋巴結轉移及預后有關[12~14]。maspin基因可能通過調控腫瘤微淋巴管形成相關因子表達及調節腫瘤慢性炎癥微環境從而調控腫瘤淋巴管生成。現就maspin基因在腫瘤微淋巴管生成中的調控作用機制研究進展做一綜述。
VEGF-C或VEGF-D與位于淋巴管內皮細胞上的酪氨酸激酶受體VEGFR-3結合,引起VEGFR-3絡氨酸殘基磷酸化等一系列反應,最終激活AKT、JNK、Erk等信號通路,引起淋巴管內皮細胞增殖和淋巴管生成[15]。有學者[16]用VEGF-C sh-RNA抑制VEGF-C表達后,發現腫瘤組織中微淋巴管密度明顯減少。Stacker等[17]利用不表達VEGF-D的293EBNA細胞系建立小鼠腫瘤模型,證明VEGF-D可促進腫瘤微淋巴管生成。Chen等[18]通過脂質體轉染法使maspin基因在浸潤性膀胱癌T24及5637細胞系中過表達,發現maspin基因可以有效抑制P-AKT、PI3K及mTOR的表達。Zhu等[19]利用shRNA干擾技術下調膀胱癌細胞株BIU-87中maspin基因表達,結果發現BIU-87細胞中VEGF-C mRNA及蛋白表達水平顯著升高;將maspin基因轉染BIU-87細胞后,發現maspin基因表達與VEGF-C表達呈負相關關系,同時,maspin蛋白高表達的BIU-87細胞對順鉑的敏感性提高。Wang等[12]也發現,低表達maspin和高表達VEGF-C與非小細胞肺癌的不良預后有關,同時證明maspin基因表達與患者淋巴結轉移情況顯著相關。以上研究結果提示,maspin基因可能通過抑制VEGF-C及VEGF-D的表達、影響PI3K/Akt通路激活從而抑制腫瘤微淋巴管生成。
Ang家族包括4個配體(Ang-1、2、3、4)和兩個對應的酪氨酸激酶受體。Ang-1與內皮細胞表面的酪氨酸激酶受體2(Tie-2)結合后誘導Ang-1自磷酸化并維持血管穩定性、完整性。Ang-1還可誘導淋巴管擴大、發芽,且參與腫瘤的VEGFR-3依賴性增殖過程。Ang-2參與淋巴管的重塑和穩定性的維持[20]。Yuen等[21]敲除了角膜炎小鼠的Ang-2基因,發現微淋巴管生成明顯受抑;利用siRNA干擾Ang-2基因表達后,發現在炎癥角膜中淋巴管內皮和毛細血管的生成減少,從而證實Ang-2在微淋巴管生成中起重要作用。Jeon等[22]利用3,3′-二吲哚基甲烷(DIM,化療藥物)干預結腸炎小鼠模型,發現DIM顯著抑制小鼠結腸上皮組織中嗜中性粒細胞浸潤、促炎細胞因子和VEGF-C、VEGF-D、VEGFR-3、Ang-2的表達,并抑制微淋巴管生成。研究[23]發現,喉鱗癌患者maspin基因表達與Ang表達呈負相關關系,maspin基因表達與喉鱗癌患者無病生存時間呈正相關關系,認為maspin基因可抑制Ang表達從而起到抑制腫瘤細胞轉移的作用。maspin基因可能通過抑制Ang-1的表達抑制腫瘤細胞VEGFR-3依賴性增殖,調控AKT、JNK、Erk等信號通路功能,最終影響淋巴管內皮細胞增殖和淋巴管生成;maspin基因還可通過影響Ang-2的生成從而影響腫瘤淋巴管的穩定性,使腫瘤淋巴管脆性增加。
慢性炎癥在癌癥發生發展中起至關重要的作用[24]。COX-2在炎癥反應中有促進血管生成的作用,同時也是腫瘤微環境形成的重要因子[25,26]。COX-2可以誘導腫瘤干細胞形成并保持干細胞活力。COX-2過表達時腫瘤惡性程度增高[27]。Chuang等[27]發現,COX-2可促進淋巴管內皮細胞生長。Da等[28]研究也證實COX-2可上調胃癌組織中VEGF-C表達,推測COX-2可激活HER-2/neu酪氨酸激酶受體,并通過前列腺素E2(PGE2)受體依賴途徑上調VEGF-C基因表達,進而影響腫瘤淋巴管生成。Chao等[13]研究表明肝素酶、COX-2表達與宮頸癌淋巴管生成有關。Wu等[29]認為maspin基因可能通過下調COX-2的表達、調節葡萄糖調節蛋白78(GRP78)生成,進而影響腫瘤細胞的增殖和遷移。
慢性炎癥微環境中的炎癥細胞或分子對腫瘤淋巴管生成也起到不可忽視的作用。浸潤到腫瘤的巨噬細胞稱為腫瘤相關巨噬細胞(TAM),是腫瘤微環境中炎癥因子的主要來源,更是腫瘤血管和淋巴管生成中重要的效應細胞。TAM能表達LYVE-1,后者是淋巴管內皮細胞建立的可靠標志物之一。TAM不僅能促進淋巴生成因子的分泌,還可誘導淋巴管內皮細胞生成。Go等[14]發現TAM密度與胃癌淋巴結轉移、腫瘤微淋巴管密度有關,提示TAM有助于腫瘤微淋巴管生成并可促進腫瘤細胞發生淋巴結轉移。Dzinic等[30]將過表達maspin的人前列腺癌細胞DU-145接種在裸鼠皮下,發現前列腺癌移植瘤體中嗜中性粒細胞水平高于對照組,證實maspin蛋白可促進嗜中性粒細胞成熟、活化從而增強對腫瘤細胞的特異性抗體反應,認為maspin基因可通過改變腫瘤微環境中炎癥因子水平來提高人體抗腫瘤免疫功能,減少腫瘤細胞淋巴結轉移。慢性炎癥的缺氧環境也是促進淋巴管生成的重要因素之一,缺氧誘導因子1α(HIF-1α)是一種氧依賴轉錄激活因子,在缺氧環境中廣泛表達,其靶基因包括促紅細胞生成素、糖酵解酶、VEGF、VEGF-C等[31]。HIF-1α可誘導VEGF-C表達,促進淋巴管增生和淋巴內皮細胞遷徙[32]。多項研究[33]證實HIF-1α可能參與腫瘤淋巴管的生成和腫瘤淋巴結轉移,機制可能與調控PI3K/AKT/mTOR信號通路功能及VEGF-C表達有關。Mckenzie等[34]研究發現,過表達maspin的人前列腺腫瘤DU-145在缺氧環境中細胞凋亡率高于對照組,且maspin基因表達與HIF-1α、VEGF表達呈負相關關系,提示maspin基因在缺氧環境中可能通過調控HIF-1α表達從而影響靶基因VEGF-C的表達,同時與VEGF-C共同調控PI3K/AKT/mTOR信號通路功能,影響腫瘤微淋巴管的增生和淋巴內皮細胞的遷移。
近年研究表明,maspin基因具有抑制腫瘤細胞增殖、轉移的作用并能促進腫瘤細胞凋亡,降低腫瘤細胞對放化療的耐受性,是功能較全面的抑癌基因。maspin的抗腫瘤淋巴管生成具體作用機制仍有待進一步探討。相信隨著對maspin基因作用機制的深入研究,有望為腫瘤治療和預防提供新的方向。
[1] Kerjaschki D. The crucial role of macrophages in lymphangiogenesis[J]. J Clini Invest, 2005,115(9):2316-2319.
[2]Yulong H, Iiro R, Maritta I, et al. Preexisting lymphatic endothelium but not endothelial progenitor cells are essential for tumor lymphangiogenesis and lymphatic metastasis[J]. Cancer Re, 2004,64(11):3737-3740.
[3] Fagiani E, Christofori G. Angiopoietins in angiogenesis[J]. Cancer Lett, 2013,328(1):18-26.
[4] Libetta C, Esposito P, Martinelli C, et al. Hepatocyte growth factor (HGF) and hemodialysis: physiopathology and clinical implications[J]. Clini Exp Nephrol, 2016,20(3):1-8.
[5] Liu J, Yin S, Reddy N, et al. Bax mediates the apoptosis-sensitizing effect of maspin.[J]. Cancer Res, 2004,64(5):1703-1711.
[6] Ciortea CD, Jung I, Gurzu S, et al. Correlation of angiogenesis with other immunohistochemical markers in cutaneous basal and squamous cell carcinomas[J]. Roman J Morphol Embryol, 2015,56(2 Suppl):665-670.
[7] Cher ML, Biliran HR, Bhagat S, et al. Maspin expression inhibits osteolysis, tumor growth, and angiogenesis in a model of prostate cancer bone metastasis[J]. Proc Nat Acad Sci USA, 2003,100(13):7847-7852.
[8] Narayan M, Twining S. Focus on molecules: Maspin[J]. Exp Eye Res, 2010,90(1):2-3.
[9] Almamun MA, Farid DM, Ravenhil L, et al. An In silico Model to Demonstrate the Effects of Maspin on Cancer Cell Dynamics[J]. J Theor Bio, 2015,388:37-49.
[10] Chen WS, Yen CJ, Chen YJ, et al. miRNA-7/21/107 contribute to HBx-induced hepatocellular carcinoma progression through suppression of maspin[J]. Oncotarget, 2015,6(28):25962-25974.
[11] Tang Y, Zu X, Xiong Y, et al. Expression of Maspin in bladder carcinoma and the relationship between Maspin and lymph node metastasis[J]. J Cent South Univer, 2015,40(12):1306-1312.
[12] Wang X, Wang Y, Li S, et al. Decreased maspin combined with elevated vascular endothelial growth factor C is associated with poor prognosis in non-small cell lung cancer[J]. Thorac Cancer, 2014, 5(5):383-390.
[13] Chao Z, Lili C, Zheng Y, et al. The close correlation between heparanase and COX-2 expression in lymphangiogenesis of cervical cancer.[J]. Med Oncol, 2014,31(12):314-314.
[14] Go Y, Tanaka H, Tokumoto M, et al. Tumor-Associated Macrophages Extend Along Lymphatic Flow in the Pre-metastatic Lymph Nodes of Human Gastric Cancer[J]. Ann Surg Oncol, 2016,23(2):1-6.
[15] Makinen T, Veikkola T, Mustjoki S, et al. Isolated lymphatic endothelial cells transduce growth, survival and migratory signals via the VEGF-C/D receptor VEGFR-3[J]. Embo J, 2001,20(17):4762-4773.
[16] Yuzhen S, Mingmin T, Yuefei W, et al. VEGF-C ShRNA inhibits pancreatic cancer growth and lymphangiogenesis in an orthotopic fluorescent nude mouse model[J]. Anticancer Res, 2013,33(2):409-417.
[17] Stacker SA, Caesar C, Baldwin ME, et al. VEGF-D promotes the metastatic spread of tumor cells via the lymphatics[J]. Nat Med, 2001,7(2):186-191.
[18] Chen J, Long W, Tang Y, et al. Maspin enhances cisplatin chemosensitivity in bladder cancer T24 and 5637 cells and correlates with prognosis of muscle-invasive bladder cancer patients receiving cisplatin based neoadjuvant chemotherapy[J]. J Exp Clin Cancer Res, 2016,35(1):1-11.
[19] Zhu H, Yun F, Shi X, et al. VEGF-C inhibition reverses resistance of bladder cancer cells to cisplatin via upregulating maspin[J]. Mol Med Rep, 2015,12(2):3163-3169.
[20] Wu X, Liu N. The role of Ang/Tie signaling in lymphangiogenesis[J]. Lymphology, 2010,43(2):59-72.
[21] Yuen D, Grimaldo S, Sessa R, et al. Role of Angiopoietin-2 in Corneal Lymphangiogenesis[J]. Invest Ophthalmol Vis Sci, 2014,55(5):3320-3327.
[22] Jeon EJ, Davaatseren M, Hwang JT, et al. Effect of oral administration of 3,3′-Diindolylmethane on dextran sodium sulfate-induced acute colitis in mice[J]. J Agricul Food Chem, 2016[Epub ahead of print].
[23] Lovato A, Lionello M, Staffieri A, et al. A Higher Angiogenin Expression is Associated With a Nonnuclear Maspin Location in Laryngeal Carcinoma[J]. Clin Exp Otorhinolaryngol, 2015,8(3):268-274.
[24] Williams C, Mann MR. The role of cyclooxygenases in inflammation, cancer, and development[J]. Oncogene, 2000,18(55):7908-7916.
[25] Ejima K, Layne MI, Kritek P, et al. Cyclooxygenase-2-deficient mice are resistant to endotoxin-induced inflammation and death[J]. Faseb J, 2003,17(19):243.
[26] Chimalramírez GK, Espinozasánchez NA, Fuentespananá EM. A Role for the Inflammatory Mediators Cox-2 and Metalloproteinases in Cancer Stemness[J]. Anticancer Agents Med Chem, 2015,15(7):837-855.
[27] Chuang YF, Chen MC, Huang SW, et al. Protein Phosphatase 2A in Lipopolysaccharide-Induced Cyclooxygenase-2 Expression in Murine Lymphatic Endothelial Cells[J]. PLoS One, 2015, 10(8):e0137177.
[28] Da MX, Wu XT, Wang J, et al. Expression of Cyclooxygenase-2 and Vascular Endothelial Growth Factor-C Correlates with Lymphangiogenesis and Lymphatic Invasion in Human Gastric Cancer[J]. Arch Med Res, 2008,39(1):92-99.
[29] Wu CT, Wang WC, Chen MF, et al. Glucose-regulated protein 78 mediates hormone-independent prostate cancer progression and metastasis through maspin and COX-2 expression[J]. Tumour Biol, 2014,35(1):195-204.
[30] Dzinic SH, Chen K, Thakur A, et al. Maspin expression in prostate tumor elicits host anti-tumor immunity[J]. Oncotarget, 2014,5(22):11225-11236.
[31] Finger EC, Giaccia AJ. Hypoxia, inflammation, and the tumor microenvironment in metastatic disease[J]. Cancer Metastasis Rev, 2010,29(2):285-293.
[32] Ji RC. Hypoxia and lymphangiogenesis in tumor microenvironment and metastasis[J]. Cancer Letters, 2014,346(1):6-16.
[33] Teng H, Yang Y, Wei H, et al. Fucoidan Suppresses Hypoxia-Induced Lymphangiogenesis and Lymphatic Metastasis in Mouse Hepatocarcinoma[J]. Marine Drugs, 2015,13(6):3514-3530.
[34] Mckenzie S, Sakamoto S, Kyprianou N. Maspin modulates prostate cancer cell apoptotic and angiogenic response to hypoxia via targeting AKT[J]. Oncogene, 2008,27(57):7171-7179.
10.3969/j.issn.1002-266X.2017.03.036
R730
A
1002-266X(2017)03-0111-03
2016-07-17)