田玉川
【中圖分類號】 G62.23 【文獻標識碼】 A 【文章編號】 2095-3089(2016)36-0-01
數學思想方法是從數學內容中提煉出來的數學學科的精髓,是將數學知識轉化為數學能力的橋梁。數學課十分強調思想性與科學性的統一。數學領域中的知識博大精深,學之不盡。小學生們所學到的只是數學基礎知識中的最基本的東西。因此,學校教學,要求學生掌握基本概念、基本定律、基本運算、演算例題等一些基礎知識固然重要,但更重要的是,要讓學生了解或理解一些數學的基本思想,學會掌握一些研究數學的基本方法,從而獲得獨立思考的自學能力。小學階段是學生學習知識的啟蒙時期,在這一階段注意給學生進行數學的基本思想和方法的教育便顯得尤為重要。那么在小學數學教學中,如何對學生進行數學的一些基本思想的教育呢?下面談談我在小學數學教學中的幾點體會
一、進行德育的思想方法
在小學數學教材中,大部分思想教育內容并不占明顯的地位,這就需要教師認真鉆研教材,充分發掘教材中潛在的思想教育因素,把思想教育貫穿于對知識的分析中。例如在教學多位數的讀法的時候,可以列出我國改革開放以來的一些數據讓學生進行練習,這樣一方面學生掌握了知識,另一發面也從中體會到我們國家取得的輝煌成就。在教學時分秒時可以對學生進行珍惜時間的教育。在教學圓周率時,可以介紹圓周率是我國的一位偉大的數學家和天文學家祖沖之計算出來的,他是世界上第一個把圓周率的值的計算精確到小數點后6位小數的人。并講述了祖沖之在追求數學道路上的感人故事,這樣既可以學生的民族自豪感,自尊心和自信心,從而轉化為祖國建設事業而刻苦學習的責任感和自覺性,另一方面也可以培養學生不畏艱難,艱苦奮斗,刻苦鉆研的獻身精神。可以說是一舉多得。
二、數形結合的思想方法
數與形是數學教學研究對象的兩個側面,把數量關系和空間形式結合起來去分析問題、解決問題,就是數形結合思想。“數形結合”可以借助簡單的圖形、符號和文字所作的示意圖,促進學生形象思維和抽象思維的協調發展,溝通數學知識之間的聯系,從復雜的數量關系中凸顯最本質的特征。它是小學數學教材編排的重要原則,也是小學數學教材的一個重要特點,更是解決問題時常用的方法。
例如,我們常用畫線段圖的方法來解答應用題,這是用圖形來代替數量關系的一種方法。我們又可以通過代數方法來研究幾何圖形的周長、面積、體積等,這些都體現了數形結合的思想。
三、集合的思想方法
把一組對象放在一起,作為討論的范圍,這是人類早期就有的思想方法,繼而把一定程度抽象了的思維對象,如數學上的點、數、式放在一起作為研究對象,這種思想就是集合思想。集合思想作為一種思想,在小學數學中就有所體現。在小學數學中,集合概念是通過畫集合圖的辦法來滲透的。
如用圓圈圖(韋恩圖)向學生直觀的滲透集合概念。讓他們感知圈內的物體具有某種共同的屬性,可以看作一個整體,這個整體就是一個集合。利用圖形間的關系則可向學生滲透集合之間的關系,如長方形集合包含正方形集合,平行四邊形集合包含長方形集合,四邊形集合又包含平行四邊行集合等。
四、對應的思想方法
對應是人的思維對兩個集合間問題聯系的把握,是現代數學的一個最基本的概念。小學數學教學中主要利用虛線、實線、箭頭、計數器等圖形將元素與元素、實物與實物、數與算式、量與量聯系起來,滲透對應思想。
如人教版一年級上冊教材中,分別將小兔和磚頭、小豬和木頭、小白兔和蘿卜、蘋果和梨一一對應后,進行多少的比較學習,向學生滲透了事物間的對應關系,為學生解決問題提供了思想方法。
五、極限的思想方法
極限的思想方法是人們從有限中認識無限,從近似中認識精確,從量變中認識質變的一種數學思想方法,它是事物轉化的重要環節,了解它有重要意義。
現行小學教材中有許多處注意了極限思想的滲透。在“自然數”、“奇數”、“偶數”這些概念教學時,教師可讓學生體會自然數是數不完的,奇數、偶數的個數有無限多個,讓學生初步體會“無限”思想;在循環小數這一部分內容中,1÷3=0.333…是一循環小數,它的小數點后面的數字是寫不完的,是無限的;在直線、射線、平行線的教學時,可讓學生體會線的兩端是可以無限延長的。
六、化歸的思想方法
化歸是解決數學問題常用的思想方法。化歸,是指將有待解決或未解決的的問題,通過轉化過程,歸結為一類已經解決或較易解決的問題中去,以求得解決。客觀事物是不斷發展變化的,事物之間的相互聯系和轉化,是現實世界的普遍規律。數學中充滿了矛盾,如已知和未知、復雜和簡單、熟悉和陌生、困難和容易等,實現這些矛盾的轉化,化未知為已知,化復雜為簡單,化陌生為熟悉,化困難為容易,都是化歸的思想實質。任何數學問題的解決過程,都是一個未知向已知轉化的過程,是一個等價轉化的過程。化歸是基本而典型的數學思想。我們實施教學時,也是經常用到它,如化生為熟、化難為易、化繁為簡、化曲為直等。
如:小數除法通過“商不變性質”化歸為除數是整數的除法;異分母分數加減法化歸為同分母分數加減法;異分母分數比較大小通過“通分”化歸為同分母分數比較大小等;在教學平面圖形求積公式中,就以化歸思想、轉化思想等為理論武器,實現長方形、正方形、平行四邊形、三角形、梯形和圓形的面積計算公式間的同化和順應,從而構建和完善了學生的認知結構。
七、統計的思想方法
在生產、生活和科學研究時,人們通常需要有目的地調查和分析一些問題,就要把收集到的一些原始數據加以歸類整理,從而推理研究對象的整體特征,這就是統計的思想和方法。例如,求平均數是一種理想化的統計方法。我們要比較兩個班的學習情況,以班級學生的平均數作為該班成績的標志是有一定說服力的,這是一種最常用、最簡單方便的統計方法。