999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

有關垂足三角形幾個最值猜想的證明*

2016-12-01 08:22:51蔣榮清
中學教研(數學) 2016年3期

●蔣榮清

(臺州市教育局教研室 浙江臺州 318000)

?

有關垂足三角形幾個最值猜想的證明*

●蔣榮清

(臺州市教育局教研室 浙江臺州 318000)

△DEF為銳角△ABC內點P對應的垂足三角形,記三角形的面積、周長、外接圓半徑分別為S,L,R.筆者證明了當點P為△ABC的外心時,S最大;當點P為△ABC的垂心時,L最小;當點P為△ABC的內心時,R最小.

銳角三角形;垂足三角形;最值

定義 如圖1,在△ABC中,過點P分別作PD,PE,PF垂直AB,BC,CA于點D,E,F,聯結DE,EF,FD,則稱△DEF為△ABC的垂足三角形.

圖1 圖2

對于垂足三角形,在文獻[1]中提出了4個猜想:

猜想 如圖1,△DEF為銳角△ABC內點P對應的垂足三角形,記△DEF的面積、周長、外接圓半徑、內切圓半徑分別為S,L,R,r,則

1)當點P為△ABC的外心時,S最大;

2)當點P為△ABC的垂心時,L最小;

3)當點P為△ABC的內心時,R最小;

4)當點P為△ABC的重心時,r最大.

對于猜想4)已尋找到反例,因此一般情形不成立.下面證明猜想1)~3).

1 猜想1)的證明

證法1 如圖2,設⊙O為△ABC的外接圓,且半徑為R,OP=d,AP的延長線交⊙O于點M.因為∠AFP=∠ADP=90°,所以點A,D,P,F共圓,且AP是這個圓的直徑,從而∠PAD=∠PFD.由正弦定理得

從而DF=AP·sin∠BAC,

(1)

同理可得 ∠PBE=∠PFE,EF=BP·sin∠ABC,

(2)

于是

∠DFE=∠PFD+∠PFE=∠PAD+∠PBE=∠CBM+∠PBE=∠PBM.

在△PBM中,由正弦定理得

從而

因此PM·sin∠ACB=BP·sin∠DFE.

(3)

由式(1)~(3)得

又△ABC為銳角三角形,由圓冪定理得AP·PM=R2-d2,

于是

由于sin∠BAC·sin∠ABC·sin∠ACB為正的定值,且R也是一個定值,因此當d=0,即點P與點O重合時,S△DEF的面積最大.

圖3

引理1 如圖3,△ABC為銳角三角形,⊙O是它的外接圓,半徑為R.設A(R,0),B(Rcosα,Rsinα),C(Rcosβ,-Rsinβ)(其中0<α<π,0<β<π),點P(a,b)在△ABC內,△DEF是對應于點P(a,b)的△ABC的(廣義)垂足三角形,|PO|=d,記△ABC,△DEF的面積分別為S′,S,則

同理可得

因此

因為

下面給出猜想1)的第2種證法:

圖4

2 猜想2)的證明

如圖4,H是△ABC的垂心,K,M,N分別是邊AB,AC,BC上的垂足,點F關于直線BC的對稱點為F′,則EF=EF′,∠FCE=∠F′CE.在直線F′C上取點M′,使∠MNC=∠M′NC,則在△MNC和△M′NC中,

∠FCE=∠F′CE, ∠MNC=∠M′NC,NC=NC,

即△MNC≌△M′NC,從而MN=M′N.同理可得,設點F關于直線AB的對稱點為F″,則DF=DF″.在直線F″A上存在點M″,使得

∠M″KA=∠MKA,MK=M″K,

因此△DEF的周長為L=F″D+DE+EF′,△KMN的周長為L′=M″K+KN+NF′.

(事實上,點M′,N,K,M″共線.因為點M,H,N,C共圓,所以∠HNM=∠HCM,同理可得∠HNK=∠HBK.又∠HCM=∠HBK=90°-∠BAC,于是∠HNM=∠HNK,而∠MNC=∠M′NC,∠HNM+∠MNC=90°,則點K,N,M′共線.同理可得,點K,N,M″共線,故點M′,N,K,M″共線.)因此,△KMN的周長L′=M′M″,而△DEF的周長L=F″D+DE+EF′≥F′F″,至此原問題化為只需證明F′F″≥M′M″即可.由前面的證明知

∠NM′C=∠NMC, ∠KM″A=∠KMA,

又∠NMC=∠KMA,從而∠NM′C=∠KM″A,于是△OM′M″為等腰三角形,故OM′=OM″.

因為F′M′=FM,F″M″=FM,所以F′M′=F″M″.設OM′=OM″=x,F′M′=F″M″=y,∠AOC=α.由余弦定理得

從而

故F′F″≥M′M″,即猜想2)成立.

3 猜想3)的證明

設△DEF的外接圓圓心為O,則⊙O與△ABC的3條邊必有公共點,也即⊙O與△ABC的3條邊相交或相切.因此可將問題分成4類:①⊙O與△ABC的3條邊都相切;②⊙O與△ABC的2條邊相切、1條邊相交;③⊙O與△ABC的1條邊相切、2條邊相交;④⊙O與△ABC的3條邊都相交.當點P為△ABC的內心時,記此時△DEF的外接圓半徑為R0.只需證明另外3種情形的R≥R0即可.

圖5 圖6

①如圖5,當△DEF的外接圓與△ABC的3條邊都相切時,此時點O與點P重合,記△DEF的外接圓半徑為R0,易知

②如圖6,當△DEF的外接圓與△ABC的2條邊相切、1條邊相交時,不妨設與AB,BC相切,與AC相交,記△DEF的外接圓半徑為R.過點O作OM⊥AC于點M,則OM

因此

圖7 圖8

故R>R0.

③如圖7,當△DEF的外接圓與△ABC的1條邊相切、2條邊相交時,不妨設與AB相切,與BC,AC相交,記△DEF的外接圓為R.過點O分別作OM⊥AC于點M,ON⊥BC于點N,則OM

于是

因此

故R>R0.

④如圖8,當△DEF的外接圓與△ABC的3條邊都相交.過點O分別作OM⊥AC于點M,ON⊥BC于點N,OJ⊥AB于點J,則OM

OM

故R>R0.

綜上所述,當點P為△ABC的內心時,R最小.

[1] 蔣榮清.有關垂足三角形的進一步探究[J].數學教學,2009(12):12-15.

?2015-10-20;

2015-11-16.

蔣榮清(1966-),男,浙江臺州人,浙江省數學特級教師,研究方向:數學教育.

O123.1

A

1003-6407(2016)03-28-04

主站蜘蛛池模板: 久久国产精品娇妻素人| 欧美色图第一页| 欧美日韩导航| 婷婷亚洲最大| 亚洲人成成无码网WWW| 国内99精品激情视频精品| 国产乱人伦AV在线A| 国产欧美成人不卡视频| 亚洲精品国产综合99久久夜夜嗨| 91国内在线观看| 久久99国产视频| 色一情一乱一伦一区二区三区小说| 久操线在视频在线观看| 四虎在线观看视频高清无码 | 国产精品一区二区国产主播| 伊人国产无码高清视频| a级毛片免费网站| 亚洲欧洲日本在线| 国产欧美精品一区二区| 一本一道波多野结衣一区二区| 国产不卡国语在线| 久久久噜噜噜| 国产肉感大码AV无码| 国产成人综合网| 九九热精品在线视频| 欧美成人免费一区在线播放| 97国产精品视频自在拍| 亚洲色图欧美视频| 精品视频一区二区三区在线播| 成人亚洲天堂| 久久大香伊蕉在人线观看热2| 国产91视频免费观看| 一本大道香蕉久中文在线播放| 久久久久88色偷偷| 欧美午夜久久| 国产精品开放后亚洲| 亚洲国产午夜精华无码福利| 在线观看亚洲天堂| 欧美成人综合在线| 亚洲天堂777| 亚洲综合色婷婷中文字幕| 永久免费无码成人网站| 69视频国产| 久久久精品无码一区二区三区| AⅤ色综合久久天堂AV色综合 | 亚洲欧美日韩中文字幕在线| 91小视频在线播放| 国产一级裸网站| 亚洲欧美不卡中文字幕| 国产在线啪| 亚洲成人www| 国产极品美女在线播放| 亚洲天堂首页| 五月激情婷婷综合| 国产成人在线小视频| 国产第二十一页| 欧美成在线视频| 日本www色视频| 国产凹凸视频在线观看| 999国产精品永久免费视频精品久久 | 国产成人综合在线视频| 色噜噜狠狠狠综合曰曰曰| 成人午夜天| 高清久久精品亚洲日韩Av| 国产高清精品在线91| 制服无码网站| 熟女日韩精品2区| 激情综合五月网| 亚洲另类第一页| 国产成人久久综合777777麻豆 | 欧美性色综合网| 欧美天堂在线| 精品成人免费自拍视频| 色综合久久无码网| 99这里只有精品在线| 91人妻日韩人妻无码专区精品| 91麻豆国产视频| 国产91麻豆视频| 99热这里都是国产精品| 91在线激情在线观看| 天天色天天综合| 亚洲视频黄|