狄貴東+彭更新+龐雄奇+劉立峰+李國會+李剛+譚楊



摘 要:塔里木盆地碳酸鹽巖油氣藏具有埋藏深,儲集空間和流體性質十分復雜,地震反射信號弱的特點。傳統疊后地震資料和技術手段難于準確預測這類油氣藏的分布和品質。基于地震資料保幅疊前道集,運用純縱波儲層反演技術分析巖溶儲層發育的有利部位;運用頻率依賴AVO反演方法預測一間房組含油氣性,實際應用效果證實預測結果良好;通過古地貌恢復技術預測碳酸鹽巖儲層有利分布區,能夠為溶蝕孔洞儲層的展布提供可靠的地質依據。以此為基礎,進一步探討了該區深層次生碳酸鹽巖油氣藏的分布主要受古地貌、斷裂、不整合、構造背景下的上傾部位等因素的控制。地球物理新方法在碳酸鹽巖油氣藏預測中的成功應用對塔里木盆地下一步深層油氣勘探具有重要意義。
關鍵詞:儲層;流體;預測;一間房組;古地貌;碳酸鹽巖;控制因素;塔里木盆地
中圖分類號:P631.4;TE122 文獻標志碼:A
文章編號:1672-6561(2016)05-0715-12
Abstract: The hydrocarbon reservoirs of carbonatite in Tarim Basin have the characteristics of deep buried, complicated reservoir space and fluid properties and weak seismic reflection signal. The conventional post-stack seismic data and corresponding techniques are not competent to accurately predict the distribution and quality of this kind of reservoirs. Based on the preserved pre-stack gathers of seismic data, the pure longitudinal wave reservoir inversion technology was used to analyze the favorable position of karstic reservoir; the frequency-dependent AVO inversion method was used to predict the oil-gas-bearing of Yiijanfang Formation; the paleogeomorphy recovery technology was used to predict the favorable distribution of carbonate reservoirs in order to provide a reliable geological basis for the distribution of dissolved pore reservoir; further, the distribution of deep secondary carbonate reservoirs was discussed. The results show that the prediction results by the frequency-dependent AVO inversion method are coincident with the actual drilling and logging data; the distribution of carbonate reservoirs is controlled by paleogeomorphy, fault, unconformity and the updip part of tectonic setting. The above new geophysical method is successfully applied in the prediction of carbonate reservoirs, promoting the further deep hydrocarbon exploration in Tarim Basin.
Key words: reservoir; fluid; prediction; Yijianfang Formation; palaeogeomorphology; carbonatite; controlling factor; Tarim Basin
0 引 言
哈拉哈塘地區位于塔里木盆地北部,東與輪南低凸起相連,西與英買力低凸起相接,南部緊鄰滿加爾凹陷,北部為塔北隆起輪臺凸起。該區碳酸鹽巖是塔里木盆地油氣勘探的重點領域之一,勘探面積約4 000 km2,擁有巨大的油氣資源潛力[1]。哈得遜區塊位于哈拉哈塘東南側哈得遜鼻狀隆起構造帶主體構造高部位上,其奧陶系一間房組以發育厚層—巨厚層灰色和褐灰色砂屑灰巖、鮞粒灰巖和砂礫砂屑灰巖為主,具有低孔、低滲的特點[2-3]。長期有利于大氣淡水淋濾溶蝕的物理條件及地質條件使得哈得遜地區巖溶得到充分發育,位于一間房組不整合面以下發育的次生溶蝕孔洞縫為有效的儲集空間。這些儲集空間類型多種多樣,主要包括洞穴型、孔洞型、裂縫-孔洞型等[1-7]。
溶蝕孔洞縫常在疊后剖面上表現出強的反射振幅特征,按規模大小主要包括“串珠狀-片狀”大型縫洞體[圖1(a)、(b)]及單獨“串珠狀”[圖1(c)]強反射,這也是傳統方法依據疊后資料進行這類儲層識別的基本依據。圖1為哈得遜井區針對強反射的30口已鉆井的鉆探效果統計和典型疊后反射特征。從圖1可以看出:雖然有22口井成功獲得工業油流(占全井總數的73.3%),但仍有7口井(占全井總數的23.3%)以鉆遇出水為主。顯然,傳統單一疊加資料可以找到儲層的發育區域,但難以判別儲集體的流體(水、油氣等)充填性質。此外,傳統疊加資料受AVO效應(振幅隨偏移距變化而變化)的影響并非真正的零檢距反射,對儲層的具體分布描述精度有限[8]。