999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

A NOTE ON CYCLIC CODES OVER Fpm+uFpm+u2Fpm

2016-10-13 08:12:21LIUXiusheng
數(shù)學(xué)雜志 2016年5期
關(guān)鍵詞:分類方法

LIU Xiu-sheng

(School of Mathematics and Physics,Hubei Polytechnic University,Huangshi 435003,China)

A NOTE ON CYCLIC CODES OVER Fpm+uFpm+u2Fpm

LIU Xiu-sheng

(School of Mathematics and Physics,Hubei Polytechnic University,Huangshi 435003,China)

In this paper,we study cyclic codes of length psover the ring Fpm+uFpm+u2Fpm. By establishing the homomorphism from ring Fpm+uFpm+u2Fpmto ring Fpm+uFpm,we give the new classify method for cyclic codes of length psover the ring Fpm+uFpm+u2Fpm.Using the method of the classify,we obtain the number of codewords in each of cyclic codes of length psover ring Fpm+uFpm+u2Fpm.

local ring;cyclic codes;repeated-root codes;the number of codewords

2010 MR Subject Classification:94B05;94B15

Document code:AArticle ID:0255-7797(2016)05-0981-06

1 Introduction

Let Fpmbe a finite field with pmelements,where p is a prime and m is an integer number. Let R be the commutative ring Fpm+uFpm+u2Fpm={a+bu+cu2|a,b,c∈Fpm}with u3=0.The ring R is a chain ring,which has a unique maximal ideal〈u〉={au|a∈Fpm}(see[3]).A code of length n over R is a nonempty subset of Rn,and a code is linear over R if it is an R-submodule of Rn.Let C be a code of length n over R and P(C)be its polynomial representation,i.e.,

The notions of cyclic shift and cyclic codes are standard for codes over R.Briefly,for the ring R,a cyclic shift on Rnis a permutation T such that

A linear code over ring R of length n is cyclic if it is invariant under cyclic shift.It is known that a linear code over ring R is cyclic if and only if P(C)is an ideal of[5]).

The following two theorems can be found in[1].

Theorem 1.1

Type 1〈0〉,〈1〉.

Type 2 I=〈u(x-1)i〉,where 0≤i≤ps-1.

Type 4 I=〈(x-1)i+(x-1)j,u(x-1)w〉,where 1≤i≤ps-1,c1j∈Fpm,w<l and w<T,where T is the smallest integer such that u(x-1)T∈〈(x-1)i+(x-1)j〉;or equivalently,〈(x-1)i+u(x-1)th(x),u(x-1)w〉,with h(x)as in Type 3,and deg(h)≤w-t-1.

Theorem 1.2 Let C be a cyclic code of length psover Fpm+uFpm,as classified in Theorem 1.1.Then the number of codewords nCof C is determined as follows.

If C=〈0〉,then nC=1.

If C=〈1〉,then nC=p2mps.

If C=〈u(x-1)i〉,where 0≤i≤ps-1,then nC=pm(ps-i).

If C=〈(x-1)i〉,where 1≤i≤ps-1,then nC=p2m(ps-i).

If C=〈(x-1)i+u(x-1)th(x)〉,where 1≤i≤ps-1,0≤t<i,and h(x)is a unit,then

If C=〈(x-1)i+u(x-1)th(x),u(x-1)κ〉,where 1≤i≤ps-1,0≤t<i,either h(x)is 0 or h(x)is a unit,and

then nC=pm(2ps-i-κ).

Recently,Liu and Xu[3]studied constacyclic codes of length psover R.In particular,they classified all cyclic codes of length psover R.But they did not give the number of codewords in each of cyclic codes of length psover R.In this note,we study repeatedroot cyclic codes over R by using the different method from[2],and obtain the number of codewords in each of cyclic codes of length psover R.

2 Cyclic Codes of Length psover R

Cyclic codes of length psover R are ideals of the residue ring R1= to prove the ring R1is a local ring with the maximal ideal〈u,x-1〉,but it is not a chain ring.

We can list all cyclic codes of length psover R1as follows.

Type 1〈0〉,〈1〉.

Type 2I=〈u2(x-1)k〉,where 0≤k≤ps-1.

Type 5I=〈(x-1)i+u(x-1)th1(x)+u2(x-1)zh2(x)〉,where 1≤i≤ps-1,0≤t<i,0≤z<i and h1(x),h2(x)are similar to h(x)in Type 3.

Type 6I=〈(x-1)i+u(x-1)th1(x)+u2(x-1)zh2(x),u2(x-1)η〉,where 1≤i≤ps-1,0≤t<i,0≤z<i,h1(x),h2(x)are similar to h(x)in Type 3,η<i,and η is the smallest integer such that u2(x-1)η∈〈(x-1)i+u(x-1)th1(x)+u2(x-1)zh2(x)〉.

Type 8I=〈(x-1)i+u(x-1)th1(x)+u2(x-1)zh2(x),u(x-1)q+u2e2j(x-1)j,u2(x-1)σ〉,where 1≤i≤ps-1,σ<q≤i,0≤t≤i,0≤z≤i,q<T≤i,T is the smallest integer such that u(x-1)T∈〈(x-1)i+u(x-1)th1(x)〉,and σ is the smallest integer such that u2(x-1)σ∈〈u(x-1)q+u2e2j(x-1)j〉,and h1(x),h2(x)are similar to h(x)in Type 3.

Proof Ideals of Type 1 are the trivial ideals.Consider an arbitrary nontrivial ideal of R1.

Start with the homomorphism φ:Fpm+uFpm+u2Fpm→Fpm+uFpmwith φ(a+ub+ u2c)=a+ub.This homomorphism then can be extended to a homomorphism of rings of polynomials

by letting φ(c0+c1x+···+cps-1xps-1)=φ(c0)+φ(c1)x+···+φ(cps-1)xps-1.Note that Kerφ=.

Now,let us assume that I is a nontrivial ideal of R1.Then φ(I)is an ideal of.But ideals ofare characterized.So we can make use of these results.

On the other hand,Kerφ is also an ideal of.We can consider it to be u2times a ideal of.This means that we can again use the results in the aforementionedpapers.By using the characterization in[2],we have

For φ(I),by using the characterization in[1],we shall discuss φ(I)by carrying out the following cases.

Case 1 φ(I)=0.Then I=〈u2(x-1)k〉,where 0≤k≤ps-1.

Case 2 φ(I)/=0.We now have seven subcases.

Case 2a φ(I)=〈u(x-1)l〉,where 0≤l≤ps-1.

If Kerφ/=0,then Kerφ=〈u2(x-1)w〉,where 0≤w≤ps-1.Hence

If Kerφ/=0,then

or

where 1≤i≤ps-1,c1j,c2j∈Fpm,η<i,η is the smallest integer such that u2(x-1)η∈〈(x-1)i+u(x-1)th1(x)+u2(x-1)zh2(x)〉,and h1(x),h2(x)are similar to h(x)in Type 3.

Case 2c φ(I)=〈(x-1)i+u(x-1)th1(x),u(x-1)q〉,where 1≤i≤ps-1,0≤t≤i,q<T,and T is the smallest integer such that u(x-1)T∈〈(x-1)i+u(x-1)th1(x)〉,h1(x)is similar to h(x)in Type 3.

Theorem 2.2 Let C be a cyclic code of length psover R,as classified in Theorem 2.1. Then the number of codewords nCof C is determined as follows.

If C=〈0〉,then nC=1.

If C=〈1〉,then nC=p3mps.

If C=〈u2(x-1)k〉,where 0≤k≤ps-1,then nC=pm(ps-k).

If C=〈(x-1)i〉,where 1≤i≤ps-1,then nC=p2m(ps-i).

If C=〈(x-1)i+u(x-1)th1(x)+u2(x-1)zh2(x)〉,where 1≤i≤ps-1,0≤t<i,0≤z<i and h1(x)is a unit,then

If C=〈(x-1)i+u(x-1)th1(x)+u2(x-1)zh2(x),u2(x-1)η〉,where 1≤i≤ps-1,0≤t<i,0≤z<i,h1(x)is a unit,η<i,η is the smallest integer such that u2(x-1)η∈〈(x-1)i+u(x-1)th1(x)+u2(x-1)zh2(x)〉,and h1(x)is a unit,then

then nC=pm(2ps-i-q).

then nC=p3mps-m(i+q+σ).

References

[1]Dinh H Q.Constacyclic codes of length psover Fpm+uFpm[J].J.Alg.,2010,324:940-950.

[2]Dinh H Q.On the linear ordering of some classes of negacyclic and cyclic codes and their distance distributions[J].Finite Field Appl.,2008,14:22-40.

[3]Liu X S,Xu X.Some classes of repeated-root constacyclic codes over Fpm+uFpm+u2Fpm[J].J. Korean Math.Soc.,2014,51(4):853-866.

[5]Hammous A,Kumar P V,Calderbark A R,Sloame J A,Sol′e P.The Z4-linearity of Kordock,Preparata,Goethals,and releted codes[J].IEEE Trans.Inform.The.,1994,40:301-319.

[5]Huffman W C,Pless V.Fundamentals of error-correcting codes[M].Cambridge:Cambridge Univ. Press,2003.

關(guān)于環(huán)Fpm+uFpm+u2Fpm上循環(huán)碼的注記

劉修生
(湖北理工學(xué)院數(shù)理學(xué)院,湖北黃石435003)

本文研究了環(huán)Fpm+uFpm+u2Fpm上長(zhǎng)度為ps的循環(huán)碼分類.通過建立環(huán)Fpm+uFpm+ u2Fpm到環(huán)Fpm+uFpm的同態(tài),給出了環(huán)Fpm+uFpm+u2Fpm上長(zhǎng)度為ps的循環(huán)碼的新分類方法.應(yīng)用這種方法,得到了環(huán)Fpm+uFpm+u2Fpm長(zhǎng)度為ps的循環(huán)碼的碼詞數(shù).

局部環(huán);循環(huán)碼;重根循環(huán)碼;碼詞數(shù)

MR(2010)主題分類號(hào):94B05;94B15O157.4

date:2015-11-16Accepted date:2016-03-04

Supported by Scientific Research Foundation of Hubei Provincial Education Department of China(D20144401;B2015096)and the National Science Foundation of Hubei Polytechnic University of China(12xjz14A).

Biography:Liu Xiusheng(1960-),male,born at Daye,Hubei,professor,major in groups and algebraic coding,multiple linear algebra.

猜你喜歡
分類方法
分類算一算
垃圾分類的困惑你有嗎
大眾健康(2021年6期)2021-06-08 19:30:06
學(xué)習(xí)方法
分類討論求坐標(biāo)
數(shù)據(jù)分析中的分類討論
教你一招:數(shù)的分類
用對(duì)方法才能瘦
Coco薇(2016年2期)2016-03-22 02:42:52
四大方法 教你不再“坐以待病”!
Coco薇(2015年1期)2015-08-13 02:47:34
賺錢方法
給塑料分分類吧
主站蜘蛛池模板: 欧美伦理一区| 亚洲精品另类| 欧美第九页| 青青操国产| 波多野结衣在线一区二区| 好吊妞欧美视频免费| 色婷婷亚洲综合五月| 美女国产在线| 久久动漫精品| 国产噜噜噜| 亚洲美女操| 国产综合无码一区二区色蜜蜜| 1769国产精品免费视频| 一级一级一片免费| 91视频精品| 亚洲视频a| 国产精品亚洲一区二区三区z| 色综合天天娱乐综合网| 国产成人精品一区二区不卡| 亚洲人成电影在线播放| 国产剧情伊人| 亚洲AV无码乱码在线观看代蜜桃| 久久精品视频亚洲| 亚洲熟妇AV日韩熟妇在线| аv天堂最新中文在线| 欧美三級片黃色三級片黃色1| av无码一区二区三区在线| 国产极品美女在线播放| 国产欧美亚洲精品第3页在线| 日本一本正道综合久久dvd| 亚洲精品第一页不卡| 国产在线观看91精品| 久久久久久久久久国产精品| 久久黄色免费电影| 在线欧美日韩国产| 一区二区三区四区日韩| 亚洲国产日韩一区| 制服丝袜 91视频| 日本久久免费| 国产精品福利尤物youwu| 国产高清色视频免费看的网址| 98精品全国免费观看视频| 97国产在线播放| 久久国产精品麻豆系列| 亚洲精品成人7777在线观看| 欧美精品1区| 青青操国产视频| 亚洲美女一区| 最新国产你懂的在线网址| 欧美97色| 四虎影视无码永久免费观看| 久久国产精品影院| 日韩天堂在线观看| 这里只有精品在线播放| 久久久久人妻一区精品| 无码一区二区三区视频在线播放| 国产成人精彩在线视频50| 精品国产一区91在线| 国产精品亚欧美一区二区| 久久综合AV免费观看| 国产在线97| 久久人人97超碰人人澡爱香蕉| 天天色天天综合| 欧洲日本亚洲中文字幕| 无码专区第一页| 不卡无码网| 不卡色老大久久综合网| 欧美亚洲一区二区三区导航| 色婷婷成人| 欧美日韩资源| 午夜欧美理论2019理论| 久久人人妻人人爽人人卡片av| 国产真实二区一区在线亚洲| 色综合五月| 国产午夜福利亚洲第一| 国产成人1024精品下载| 国产精品第一区| 亚洲a级毛片| 色吊丝av中文字幕| av一区二区三区高清久久| 无遮挡国产高潮视频免费观看 | 亚洲乱强伦|