999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

NUMERICAL STABILITY ANALYSIS FOR EQUATION x')t)=ax)t)+bx)3[)t+1)/3])

2016-10-13 08:12:18WANGQiWANGXiaomingCHENXuesong
數學雜志 2016年5期
關鍵詞:方法

WANG Qi,WANG Xiao-ming,CHEN Xue-song

(School of Applied Mathematics,Guangdong University of Technology,Guangzhou 510006,China)

NUMERICAL STABILITY ANALYSIS FOR EQUATION x')t)=ax)t)+bx)3[)t+1)/3])

WANG Qi,WANG Xiao-ming,CHEN Xue-song

(School of Applied Mathematics,Guangdong University of Technology,Guangzhou 510006,China)

2010 MR Subject Classification:65L07;65L20

Document code:AArticle ID:0255-7797(2016)05-0955-08

1 Introduction

We are interested in the numerical stability of the Euler-Maclaurin method for the following differential equation with piecewise constant arguments(EPCA):

where t>0,a/=0,b and x0are real constants and[·]denotes the greatest integer function.

EPCA belongs to one special kind of delay differential equations[1-3].They described hybrid dynamical systems and combine properties of both differential and difference equations.So EPCA had many applications in science and engineering.In the past twenty years,many researchers investigated the properties of the exact solution of EPCA(see[4-6]and the references therein).In particularly,stability of solutions of EPCA received much attention(see[7-9]and the extensive bibliography therein).For more information on this type of equations,the interested readers can refer Wiener's book[10].Recently,special interest was shown to the properties of numerical solution of EPCA,such as stability[11,12],dissipativity[13]and oscillation[14].In this paper,we will study the stability of the numericalsolution in the Euler-Maclaurin method for(1.1).Whether the numerical method preserves stability of the exact solution is considered.Two numerical examples for demonstrating the theoretical results are also provided.

The following results give the definition and stability of exact solution for(1.1).

Definition 1.1(see[10])A solution of(1.1)on[0,∞)is a function x(t)which satisfies the conditions

(i)x(t)is continuous on[0,∞);

(ii)the derivative x'(t)exists at each point t∈[0,∞),with the possible exception of the points t=3n-1 for n∈N,where one-sided derivatives exist;

(iii)(1.1)is satisfied on each interval[3n-1,3n+2)for n∈N.

Theorem 1.2(see[10])Assume that a,b and x0∈R,then(1.1)has on[0,∞)a unique solution x(t)given by

where

Theorem 1.3(see[10])The solution x(t)=0 of(1.1)is asymptotically stable(x(t)→0 as t→∞)if and only if any one of the following conditions is satisfied

whereˉa is the nonzero solution of equation φ(x)=e3x-2ex+1=0.

2 Stability of Numerical Solution

2.1 The Euler-Maclaurin Method

Let h be a given stepsize,m≥1 be a given integer and satisfies h=1/m.The gridpoints tibe defined by ti=ih(i=0,1,2,···).Applying the Euler-Maclaurin formula to(1.1),we have

which is equivalent to

where

Thus

Similar to Theorem 2.2 in[14],we have the following result for convergence.

Theorem 2.1For any given n∈N,the Euler-Maclaurin method is of order 2n+2. 2.2 Stability Analysis

Definition 2.2 The Euler-Maclaurin method is called asymptotically stable at(a,b)if there exists a constant M0such that xndefined by(2.3)tends to zero as n→∞for all h=1/m and any given x0.

Lemma 2.3(see[15])If|z|<1,then Φ(z)≥1/2 for z>0 and Φ(z)≥1 for z<0.

Lemma 2.4(see[15])If|z|<1,then

for n is even and

for n is odd.

Theorem 2.5The Euler-Maclaurin method is asymptotically stable if any one of the following conditions is satisfied

ProofLet

and

so we need to verify

Then(2.6)is equivalent to

Then(2.6)is equivalent to

The proof is completed.

The following two lemmas are given naturally.

Lemma 2.6 Let f(r)=r3-2r+1,r>0,then

(a)the function f(r)has a minimum at r1=,and f(r)is decreasing in[0,r1) and increasing in[r1,+∞);

(b)the function f(r)has a unique solution 1>r0/=1;

(c)f(r)<0 if r∈[r0,1)and f(r)>0 if r∈[0,r0)or r∈[1,+∞).

Lemma 2.7 Let

then

(a)the function g(ω)has extremum at ω1=

(b)g(ω)is increasing in(0,r0)and(r0,ω1);

(c)g(ω)is decreasing in(ω1,1)and(1,+∞).

By Lemmas 2.6 and 2.7,we obtain

Corollary 2.8 Assume that r0/=1 is a unique solution of the function f(r)=r3-2r+1,then r0<ω1<r1<1.

So we have the following result.

Theorem 2.9Assume that(1.1)is asymptotically stable,then the Euler-Maclaurin method is asymptotically stable if one of the following conditions is satisfied

(a)R(z)m≤ea(a≤lnω1);

(b)R(z)m≥ea(lnω1<a<0);

(c)R(z)m≤ea(a≥0).

ProofIn view of Theorems 1.2 and 2.5,we will prove that condition(2.5)is satisfied under condition(1.2).

If(a)holds,then we know from Lemmas 2.3 and 2.4 that f(r)is decreasing and g(ω)is increasing.Henceˉa<a0and

From Lemmas 2.3,2.4 and Theorem 2.9,we have the following main result in this paper.

Theorem 2.10The Euler-Maclaurin method preserves the stability of(1.1)if one of the following conditions is satisfied

(a)n is odd if ea>ω1,

(b)n is even if ea≤ω1.

3 Numerical Experiments

Consider the following two problems

and

In Figures 1 and 2,we plot the exact solution and the numerical solution for(3.1),respectively.Moreover,for(3.2),we also plot the exact solution and the numerical solution in Figures 3 and 4,respectively.We can see from these figures that the Euler-Maclaurin method preserves the stability of(3.1)and(3.2),which is coincide with Theorem 2.10.

AcknowledgementsThe authors would like to thank the anonymous reviewers for their careful reading.Many thanks to Professors Mingzhu Liu,Minghui Song and Zhanwen Yang for their great help and valuable suggestions.

Figure 1:the exact solution of(3.1)

Figure 2:the numerical solution of(3.1)with n=3 and m=50

Figure 3:the exact solution of(3.2)

Figure 4:the numerical solution of(3.2)with n=2 and m=40

References

[1]Cheng Shengmin,Zhou Shaobo.Convergence and stability of numerical methods for stochastic differential delay equation[J].J.Math.,2014,34(6):1073-1084.

[2]Wang Xiao,Cui Cheng,Xiao Li,et al.Existence and uniqueness of solutions for differential equations with time delay and impulsive differential equations with time delay[J].J.Math.,2013,33(4):683-688.

[3]Ashyralyev A,Agirseven D.On convergence of difference schemes for delay parabolic equations[J]. Comput.Math.Appl.,2013,66(7):1232-1244.

[4]Cooke K L,Wiener J.Retarded differential equations with piecewise constant delays[J].J.Math. Anal.Appl.,1984,99(1):265-297.

[5]Wiener J,Aftabizadeh A R.Differential equations alternately of retarded and advanced type[J].J. Math.Anal.Appl.,1988,129(1):243-255.

[6]Liang Haihua,Wang Genqiang.Oscillation criteria of certain third-order differential equation with piecewise constant argument[J].J.Appl.Math.,2012,2012:1-18.

[7]Alwan M S,Liu Xinzhi,Xie Weichau.Comparison principle and stability of differential equations with piecewise constant arguments[J].J.Franklin I.,2013,350(2):211-230.

[8]Akhmet M U.Stability of differential equations with piecewise constant arguments of generalized type[J].Nonl.Anal.,2008,68(4):794-803.

[9]Li Huaixing,Muroya Y,Nakata Y,et al.Global stability of nonautonomous logistic equations with a piecewise constant delay[J].Nonl.Anal.,RWA,2010,11(3):2115-2126.

[10]Wiener J.Generalized solutions of functional differential equations[M].Singapore:World Scientific,1993.

[11]Song Minghui,Yang Zhanwen,Liu Mingzhu.Stability of θ-methods for advanced differential equations with piecewise continuous arguments[J].Comput.Math.Appl.,2005,49(9-10):1295-1301.

[12]Liang Hui,Liu Mingzhu,Yang Zhanwen.Stability analysis of Runge-Kutta methods for systems u'(t)=Lu(t)+Mu([t])[J].Appl.Math.Comput.,2014,228(1):463-476.

[13]Wang Wansheng,Li Shoufu.Dissipativity of Runge-Kutta methods for neutral delay differential equations with piecewise constant delay[J].Appl.Math.Lett.,2008,21(9):983-991.

[14]Liu Mingzhu,Gao Jianfang,Yang Zhanwen.Preservation of oscillations of the Runge-Kutta method for equation x'(t)+ax([t])+a1x([t-1])=0[J].Comput.Math.Appl.,2009,58(6):1113-1125.

[15]L¨u Wanjin,Yang Zhanwen,Liu Mingzhu.Stability of the Euler-Maclaurin methods for neutral differential equations with piecewise continuous arguments[J].Appl.Math.Comput.,2007,186(2):1480-1487.

In this paper,we investigate the numerical stability of Euler-Maclaurin method for differential equation with piecewise constant arguments x'(t)=ax(t)+bx(3[(t+1)/3]).By the method of characteristic analysis,the sufficient conditions of stability for the numerical solution are obtained.Moreover,we show that the Euler-Maclaurin method preserves the stability of the exact solution.Finally,some numerical examples are given.

Euler-Maclaurin method;piecewise constant arguments;stability;numerical solution

方程x')t)=ax)t)+bx)3[)t+1)/3])的數值穩定性分析

王琦,汪小明,陳學松
(廣東工業大學應用數學學院,廣東廣州510006)

date:2014-08-30Accepted date:2015-03-16

Supported by National Natural Science Foundation of China(11201084);China Postdoctoral Science Foundation(2013M531842)and Science and Technology Program of Guangzhou (2014KP000039).

本文研究了分段連續型微分方程x'(t)=ax(t)+bx(3[(t+1)/3])Euler-Maclaurin方法的數值穩定性問題.利用特征分析的方法,獲得了數值解穩定的充分條件,進而證明了Euler-Maclaurin方法保持了精確解的穩定性.最后給出了一些數值例子.

Euler-Maclaurin方法;分段連續項;穩定性;數值解

MR(2010)主題分類號:65L07;65L20O241.81

Biography:Wang Qi(1978-),male,born at Yichun,Heilongjiang,associate professor,major in numerical computation of differential equation.

猜你喜歡
方法
中醫特有的急救方法
中老年保健(2021年9期)2021-08-24 03:52:04
高中數學教學改革的方法
河北畫報(2021年2期)2021-05-25 02:07:46
化學反應多變幻 “虛擬”方法幫大忙
變快的方法
兒童繪本(2020年5期)2020-04-07 17:46:30
學習方法
用對方法才能瘦
Coco薇(2016年2期)2016-03-22 02:42:52
最有效的簡單方法
山東青年(2016年1期)2016-02-28 14:25:23
四大方法 教你不再“坐以待病”!
Coco薇(2015年1期)2015-08-13 02:47:34
賺錢方法
捕魚
主站蜘蛛池模板: 欧美人在线一区二区三区| 色婷婷成人网| a在线亚洲男人的天堂试看| 亚洲一级毛片免费看| 欧美国产日产一区二区| 夜夜操天天摸| 日本午夜影院| 在线观看91精品国产剧情免费| 欧美精品亚洲精品日韩专区| 日本一区二区不卡视频| 毛片在线看网站| 26uuu国产精品视频| 国产一级妓女av网站| 日韩精品一区二区深田咏美| 中文无码精品A∨在线观看不卡| 片在线无码观看| 欧美自慰一级看片免费| 呦女亚洲一区精品| 国产一级精品毛片基地| 国产农村妇女精品一二区| 亚洲国产日韩视频观看| 综合人妻久久一区二区精品| 亚洲AV无码不卡无码 | 亚洲精品国产首次亮相| 98超碰在线观看| 色综合久久无码网| 亚洲综合欧美在线一区在线播放| 99九九成人免费视频精品| 精品国产香蕉在线播出| 亚洲AⅤ综合在线欧美一区| 五月婷婷导航| 亚洲日本中文字幕乱码中文| 亚洲男人在线天堂| 亚洲另类国产欧美一区二区| 国产精品亚洲五月天高清| 精品少妇人妻av无码久久| 老司机久久99久久精品播放| 无码精品国产VA在线观看DVD| 日韩乱码免费一区二区三区| 国产成人精品日本亚洲| aⅴ免费在线观看| 日本在线视频免费| 国产在线日本| 人妻丰满熟妇AV无码区| 国产 日韩 欧美 第二页| 亚洲成人黄色在线观看| 精品久久香蕉国产线看观看gif| 全免费a级毛片免费看不卡| 毛片手机在线看| 18禁不卡免费网站| 婷婷99视频精品全部在线观看| 欧美黑人欧美精品刺激| 亚洲天堂网视频| 中国一级毛片免费观看| 伊人激情综合网| 91年精品国产福利线观看久久| 国产在线观看91精品亚瑟| 精品国产91爱| 伊人激情综合网| 亚洲婷婷六月| 露脸真实国语乱在线观看| 女人av社区男人的天堂| 亚洲日产2021三区在线| 亚洲开心婷婷中文字幕| 国产美女自慰在线观看| 97青草最新免费精品视频| 特级aaaaaaaaa毛片免费视频| 在线观看亚洲精品福利片| 色香蕉影院| AV网站中文| 91在线视频福利| 国产精品片在线观看手机版| 午夜国产精品视频| 国产午夜看片| 亚洲欧美日韩动漫| 国产欧美另类| 亚洲精品在线影院| 精品国产黑色丝袜高跟鞋| 欧美在线综合视频| 丁香婷婷激情综合激情| 麻豆精品在线| 又爽又大又黄a级毛片在线视频|