999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

THE APPLICATION OF THE BASIN OF ATTRACTION TO THE EXISTENCE AND UNIQUENESS OF SOLUTIONS FOR THE SECOND ORDER PARABOLIC BOUNDARY VALUE PROBLEM

2016-10-13 08:12:17FENGYanqingWANGZhongying
數學雜志 2016年5期
關鍵詞:拋物線

FENG Yan-qing,WANG Zhong-ying

(School of Mathematics and Chemical Engineering,Changzhou Institute of Technology,Changzhou 213000,China)

THE APPLICATION OF THE BASIN OF ATTRACTION TO THE EXISTENCE AND UNIQUENESS OF SOLUTIONS FOR THE SECOND ORDER PARABOLIC BOUNDARY VALUE PROBLEM

FENG Yan-qing,WANG Zhong-ying

(School of Mathematics and Chemical Engineering,Changzhou Institute of Technology,Changzhou 213000,China)

In this paper,a new sufficient condition of the existence and uniquence of the second order parabolic boundary value problem is given by using the basin of attraction and the comparison theorem,which generalize some existed theorems.

the basin of attraction;homeomorphism;initial value problem;the second order parabolic boundary value problem

2010 MR Subject Classification:35K20

Document code:AArticle ID:0255-7797(2016)05-0949-06

1 Introduction

We will study the parabolic operator

acting on functions in D=?×[0,T],where aij(x,t)∈(D),bi,a∈L∞(D),c=c(x)∈(?)and ? is a connected bounded subset of n-dimensional space.

Using a continuous method,Sigillito exlpored the solution for the heat equation,see[1]. Elcart and Sigillito derived an explicit coercivity inequality‖|u|‖≤const‖Lau‖0and gave a sufficient condition for the existence and uniqueness of solution to the the second order parabolic,see[2].

Recently,in this area,the global diffeomorphism theorem was used to prove the existence and uniqueness of solutions of nonlinear differential equation of certain classes.In addition,many authors were extensively investigated this problem,see Mayer[3],Plastock [4],Radulescu and Radulescu[5],Shen Zuhe[6-7],Zampieri[8].These theorems may be used for solving nonlinear systems of equation.

Motivated by these results,we shall utilize an interesting tool,the attraction basin to give a new set of sufficient condition for the existence and uniqueness of the second order parabolic boundary value problems in this paper,which can be founded in Section 3.Using our approach it is easy to obtain results of Elcart and Sigillito.Moreover,the methods apply not only to this problem but also to other nonlinear diffierential equations.

2 Preliminaries

In this section,we will state some lemmas which are useful to our results.First,we introduce the basin of attraction.

Lemma 2.1(see[8])Let G,F be Banach spaces,D be an open subset of G,x0∈D and f:D?G→F be a C1mapping and a local homeomorphism.Then for any x∈D,the path-lifting problem has a unique continuous solution t→γx(t)defined on the maximal open interval Ix= (tx-,tx+),-∞≤tx-,tx+≤+∞.Moreover,the set{(x,t)∈D×R:t∈Ix}is open in D×R and the mapping is(x,t)→γx(t)continuous.

Definition 2.1[8]In the setting of Lemma 2.1,the basin of attraction of x0is the set

Theorem 2.1[9]With the above setting,f is a global homeomorphism onto Y if and only if γx(t)is defined on R for all x∈A,namely,γx(t)can also be extended to-∞.

Lemma 2.2(see[8])Let X be Banach space,a,b∈R and p:[a,b]→X be a C1mapping on[a,b].Then‖p(t)‖has derivative‖p(t)‖'almost everywhere and‖p(t)‖'≤‖p(t)‖for a<t<b.

Second,the following comparison theorem play an important role to prove the sufficient condition for the existence of a unique solution of problem(1.1).

Let E be an open(t,x)-set in R2and g∈C[E,R].Consider the scalar differential equation with an initial condition

Theorem 2.2(Comparison theorem in[9])With the above setting,suppose that[t0,t0+ b)is the largest interval in which the maximal solution r(t)of(2.2)exists.Let

and for a fixed Dini derivative

where T denotes an almost countable subset of t∈[t0,t0+b)T,then

3 Existence Theorem

Consider the boundary value problem

where ut∈L2([0,T](?)).Let W0(D)denote the Hilbert space with the norm

where|D2u|2represents the sum of the a squares of all the second derivatives with respect to space variables and ν is positive constant.

The following assumptions are needed later.

A1 The boundary of ? is piecewise smooth with nonnegative mean curvature everywhere.

A2 f:W0(D)→L2(D)is continuous and a bounded function of t,x1,···,xn,u.

Elcart and Sigillito gave the following inequality in[2].

Lemma 3.1If u∈W0,then

where

Denote Mu=aijuxixj+biuxi-cut,then M is the linear operator from W0(D)to L2(D). We may express(3.1)in the form

For u,φ∈W0(D),we have

Define

Theorem 3.1In the setting of the above,equation(1.1)exists a unique solution if the following conditions hold

(2)for each,the maximum solution of the initial value problem

ProofWe have from(2.1)and Lemma 2.2 that

By assumption A2,we know the maximum solution y(t)of(3.3)is defined on[0,c)and there exists a sequence tn→c as n→∞such that

is finite.It follows that y(t)is continuous on[0,c)and there is a constant M such that

By the comparison theorem,we have

From conditions A1,A2 and condition(1),since λ=inf0 is the lowest eigenvalue of-Δ in ?,it follows that for all u∈W0(D),zero is not an eigenvalue ofMφ-au(x,u(t,x))φ,so for every u∈W0(D),the operator F'(u)=M-auI is invertible and F is a local homeomorphism from W0(D)onto L2(D),where I denotes the identical operator.

Then in view of Theorem 2.1,we need only show that for all x∈A,γx(t)can also be extended to-∞,namely,we need consider the problem in the opposite direction.

Let g(-h)=γx(t),t∈(a,0],h∈[0,-a),a<0 for t1,t2∈(a,0],we have

So γx(t)is Lipschitz continuous on(-a,0],γx(t)can also be extended to-∞,the theorem is proved.

Elcart and Sigillito[2]studied the following initial-boundary value problem

where??∈C2and f is continuous and has three derivatives with respect to u.Problem (3.4)may be formulated as an operator equation Pu=0,where Pu=Mu-f(x,u)is a mapping of W0(D)onto L2(D).

Corollary 3.1 Assume that f satisfies

for positive constant α,β,then δ(t)≤ω1(t),and thus

RemarkCondition(ii)in Corollary 3.1 can be replaced with=O(u),because=∞holds.The result of Elcart and Sigillito in[2]becomes a special case of Theorem 3.1.

References

[1]Sigillito V G.On a continuous method for approximating solution of the heat equation[J].Assoc. Comp.Mach.,1967,14(5):732-741.

[2]Elcrat A R,Sigillito V G.An explicit a priori estimate for parabolic equations with applications to semilinear equations[J].J.Math.Anal.Appl.,1976,7(5):746-753.

[3]Meyer G H.On solving nonlinear eauations with a one-parameter operator imbedding[J].SIAM.J. Numer.Anal.,1968,5(5):739-752.

[4]Plastock R.Homeomorphism between Banach space[J].Trans.Amer.Math.Soc.,1974,200(3):169-183.

[5]Elcrat A R,Sigillito V G.Coercivity for a third order Pseudoparabolic operator with applications to semilinear equations[J].J.Math.Anal.,1977,61(3):841-849.

[6]Shen Z H.On the periodic solution to the Newtonian equation of motion[J].Nonl.Anal.,1989,13(2):145-149.

[7]Shen Z H,Wolfe M A.On the existence of periodic solution of periodically perturbed conservative systems[J].Math.Anal.Appl.,1990,153(1):78-83.

[8]Zampieri G.Diffeomorphisms with Banach space domains[J].Nonl.Anal.,1992,19(10):923-932.

[9]Lakshmikantham V,Leeda S.Differential and integral inequalities Vol.II[M].New York:Academic Press,1969.

[10]Feng Y Q,Wang Z Y.Global homeomorphism and the existence of solutions for periodically perturbed conservative systems[J].J.Nanjing Univ.Math.Biqu.,2011,28(1):24-32.

[11]Cai Xinmin.Coupled fixed point theorem for a kind of nonlinear operators[J].J.Math.,2002,22(2):162-164.

吸引盆在二階拋物線邊值問題解存在唯一性中的應用

馮艷青,王忠英
(常州工學院數理與化工學院,江蘇常州213000)

本文研究了二階拋物線邊值問題解的存在唯一性的問題.利用吸引盆的方法和全局同胚理論,推導出二階拋物線邊值問題解存在唯一性的一個充分條件,從而推廣了已經存在的一些定理.

吸引盆;全局同胚;初值問題;二階拋物線邊值問題

MR(2010)主題分類號:35K20O175.26

date:2014-04-14Accepted date:2015-01-04

Supported by the Natural Science Foundation of JiangSu(13KJD110001).

Biography:Feng Yanqing(1969-),female,born at Yiwu,Zhejiang,associate professor,major in nonlinear function analysis and application.

猜你喜歡
拋物線
拋物線焦點弦的性質及應用
選用合適的方法,求拋物線的方程
巧用拋物線定義妙解題
拋物線高考滿分突破訓練(B卷)
巧求拋物線解析式
阿基米德三角形在拋物線中的應用
賞析拋物線中的定比分點問題
巧用拋物線的對稱性解題
巧用拋物線的對稱性解題
拋物線變換出來的精彩
主站蜘蛛池模板: 亚洲一区二区精品无码久久久| 91青青视频| 久久综合九色综合97网| 亚洲电影天堂在线国语对白| 999精品在线视频| 免费A级毛片无码免费视频| 日本亚洲欧美在线| www.91在线播放| 成人毛片在线播放| 欧美第九页| 欧美精品1区| 欧美日韩v| 国产91九色在线播放| 久久美女精品国产精品亚洲| 成人亚洲国产| 精品视频福利| 三级国产在线观看| 午夜精品久久久久久久2023| 欧美色视频网站| 亚洲综合第一页| 色婷婷成人网| 中国国产一级毛片| 国产精品无码一二三视频| 9久久伊人精品综合| 午夜国产理论| 亚洲色图在线观看| 日韩精品一区二区三区视频免费看| 久久狠狠色噜噜狠狠狠狠97视色| 成人欧美日韩| 欧美视频二区| 嫩草国产在线| 992tv国产人成在线观看| 57pao国产成视频免费播放| 日韩无码视频专区| 国产亚洲美日韩AV中文字幕无码成人 | 国产又色又爽又黄| 欧美一级在线播放| 国产一区二区色淫影院| 国产激爽大片高清在线观看| 精品1区2区3区| 人妻精品久久无码区| 亚洲最大看欧美片网站地址| av一区二区三区高清久久| 国产精品免费入口视频| 国产免费a级片| 亚洲欧美在线综合一区二区三区| 一级做a爰片久久毛片毛片| 亚洲欧美在线精品一区二区| 99国产精品一区二区| 40岁成熟女人牲交片免费| 韩国v欧美v亚洲v日本v| 99精品免费欧美成人小视频 | 亚洲精品第一在线观看视频| 免费jizz在线播放| 国产69囗曝护士吞精在线视频| 国产成人综合日韩精品无码不卡| 好吊色妇女免费视频免费| 亚洲天堂网站在线| 四虎成人精品在永久免费| A级毛片无码久久精品免费| 国产剧情伊人| 国产成人福利在线视老湿机| 国产一级特黄aa级特黄裸毛片| 国产中文一区a级毛片视频| 国产精品自拍合集| 国产爽歪歪免费视频在线观看| 狼友视频一区二区三区| 在线不卡免费视频| 蜜臀av性久久久久蜜臀aⅴ麻豆| 老司机午夜精品网站在线观看| 人妻无码AⅤ中文字| 欧美成人aⅴ| 久久性视频| 尤物成AV人片在线观看| 国产美女91视频| 国产精品尤物在线| 91久久国产成人免费观看| 色综合久久综合网| 亚洲最大综合网| 激情视频综合网| AV不卡国产在线观看| 国产欧美日韩在线一区|