999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

THE MINIMAL SOLUTION OF A SPECIAL ANTICIPATED BACKWARD STOCHASTIC DIFFERENTIAL EQUATION

2016-10-13 08:12:15TUShuhengLIAOJunjun
數學雜志 2016年5期

TU Shu-heng,LIAO Jun-jun

(1.School of Science,Henan University of Technology,Zhengzhou 450002,China)

(2.School of Mathematics and Statistics,Huazhong University of Science and Technology,Wuhan 430074,China)

THE MINIMAL SOLUTION OF A SPECIAL ANTICIPATED BACKWARD STOCHASTIC DIFFERENTIAL EQUATION

TU Shu-heng1,LIAO Jun-jun2

(1.School of Science,Henan University of Technology,Zhengzhou 450002,China)

(2.School of Mathematics and Statistics,Huazhong University of Science and Technology,Wuhan 430074,China)

In this paper,we study the problem of a minimal solution to a special class of anticipated backward stochastic differential equation.When the generator is continuous and satisfying a similar linear growth condition,we prove the existence of minimal solutions.Here,our hypotheses are weaker than the before papers,however,we obtain a better lemma and the same result.

anticipated backward stochastic differential equations;minimal solution;comparison theorem

2010 MR Subject Classification:60H99;60G99

Document code:AArticle ID:0255-7797(2016)05-0940-09

1 Introduction

The notions of non-linear backward stochastic differential equations(BSDEs)were introduced by Pardoux and Peng[11].A solution of this equation,associated with a terminal value ξ and a generator or coefficient f(t,ω,y,z),is a couple of adapted stochastic processes (Y(t),Z(t)){t∈[0,T]}such that

where W is a d-dimensional standard Brownian motion.This type of nonlinear backward stochastic differential equations were first studied by Pardoux and Peng in[11],and they established the existenceness and uniqueness of adapted solution under the global Lipschitz condition.Since then,many people try to weaken the conditions of generators to get the same results and study some different forms of BSDEs.For examples,Aman and Nz'i[1]studied BSDEs with oblique reflection and local Lipschitz.Bahlali[2]studied backwardstochastic differential equations with locally Lipschitz coefficients.Situ[9]and Royer[10]studied BSDEs with jumps.It is now well-known that BSDEs provide a useful framework for formulating a lot of mathematical problems such as used in financial mathematics,optimal control,stochastic games and partial differential equations(see[12-14]).Based on the above applications,specially in the field of finance,and optimal control,recently,a new type of BSDEs,called anticipated BSDEs(ABSDEs),were introduced by Peng and Yang[4]as the following

where θ(·):[0,T]→R+,?(·):[0,T]→R+are continuous functions and satisfy that (i)there exists a constant K≥0 such that for each t∈[0,T],

(ii)there exists a constant L≥0 such that for each t∈[0,T]and each nonnegative integrable function g(·),

Under global Lipschitz conditions,Peng and Yang proved the existencenee and uniqueness of solution(see Theorem 4.2 in[4]).

For anticipated BSDEs,we mention that the generator includes not only the values of solutions of presents but also the future.So ABSDEs may be used in finance.From Theorem 2.1 in[4],we know that there is a duality between stochastic differential equations with delay and anticipated BSDEs which can be used in optimal control.We also mention that,following Peng and Pardoux[11],many papers were devoted to BSDEs with continuous coefficients.Especially,many scholars studied the minimal solution of BSDEs,it is refered to[3,5-8].

Motivated by the above papers,in this paper,we study a special class of 1-dimension ABSDEs as the following

2 Main Reaults

Before starting our main results,we give some necessary notions and hypotheses.

2.1 Preliminaries

Let(?,F,P)be a complete probability space,and let(W(t))t∈[0,T]be a d-dimensional standard Brownian motion on(?,F,P).Let{Ft}t∈[0,T]be the natural filtration generated by W.

·L2(FT;R){R-valued FT-measurable random variables such that E[|ξ|2]<∞};

We also need the following assumptions.

(H1)Assume that for all t∈[0,T],g(t,ω,y,z,μ):[0,T]×?×R×Rd×L2(Fr;R)→L2(Ft;R),where r∈[t,T+K],and g satisfies the following conditions

moreover,u1(t)≤u1(t+θ(t)),θ(t)satisfies(i)and(ii).

Lemma 2.1 Set

then gn(t,y,z,μ(r))has the following properties.

(a)Linear growth:for any t∈[0,T],y∈R,z∈Rd,μ(·)∈L2(Fr;R),r∈[t,T+K],we have

(b)Monotone property in n:for any t∈[0,T],y∈R,z∈Rd,μ(·)∈L2(Fr;R),r∈[t,T+K],gn(t,y,z,μ(r))≤gn+1(t,y,z,μ(r))≤g(t,y,z,μ(r)),and gn(t,y,z,·)is increasing.

(c)Lipschitz condition:for any t∈[0,T],y,y'∈R,z,z'∈Rd,μ(·),μ'(·)∈L2(Fr;R),r∈[t,T+K],|gn(t,y,z,μ(r))-gn(t,y',z',μ'(r))|≤u1(t)|y-y'|+u2(t)|z-z'|+u1(t)EFt|μ(r)-μ'(r)|.

Proof We use the similar method as used in[3,6]to prove(a),(b)and(c)are obvious. We only need to prove(d).By the definition of infimum,for each n∈N,n>1,there exist un∈R,qn∈Rd,νn∈L2(Ft;R),r∈[t,T+K],such that

For the above proof,we apply the triangle inequality a±-b±≤(a-b)±and a-=(-a)+. Thus we have

Since E[|EFt(μn(r))-|2]≤E[EFt|(μn(r))|2]≤E|μn(r)|2<∞,then when n∈N,n>1,we derive

therefore

For an appropriate A>0,there exists a N>0,such that for any n>N,

and

Then

By the above inequality,we know{EFt(μn(r)-νn(r))+;n∈N,n>1}is bounded in L2(Ft;R),with(2.4),we get

Since g is continuous in L2(F;R),we have

From assumption(H3),we obtain(t,yn,zn,μn(r))=g(t,y,z,μ(r)).

Consider the following equations

where l(t,y,z,μ(r))=C(ft+|y|+|z|+EFt(μ(r))-),by the comparison theorem in[4],for any t∈[0,T+K],n≥m,m,n∈N,U(t)≥Yn(t)≥Ym(t)a.e..

Before giving our main result,we give the following lemma.

Thus by(H1)-(H3),(i),(ii)in introduction and Lemma 2.1(b),Young's inequality,Fubini's lemma,(a+b+c)2≤C(a2+b2+c2),H¨older's inequality,we have

By Gronwall's lemma,we obtain

Thus

Theorem 2.3(Minimal-solution theorem)Under assumptions(H1)-(H3),(i),(ii),equation(1.2)has a minimal solution,that is ifY'is another solution of equation(1.2). Then for any given terminal value ξ(·)∈(T,T+K;R),we have

By Lemma 2.1,Lemma 2.2,we have

Thus

Furthermore,there exists a subsequence of{n},which we still denote this subsequence by {n}such that

By the linear growth,we get

while

Thus

Using the similar method,we get

Controled convergence theorem leads to

By BDG inequality,we have

Thus there exists a subsequence,which we still denote by{n}such that

Then(Y,Z)is a solution of equation(1.2).Now,we are going to prove Y is a minimal solution of equation(1.2).Assume(Y',Z')is another solution of equation(1.2),by the comparison theorem in[4],we have Y(t)≤Y'(t)a.e.for any t∈[0,T+K].The proof is completed.

References

[1]Aman A,N'zi M.Backward stochastic differential equations with oblique reflection and local Lipschitz drift[J].J.Appl.Math.Stoch.Anal.,2003,16:295-309.

[2]Bahlali K.Backward stochastic differential equations with locally Lipschitz coefficient[J].Comptes Rendus de l'Acad′emie des Sci.-Ser.I-Math.,2001,333:481-486.

[3]Lepeltier J,Martin J.Backward stochastic differential equations with continuous coeffcients[J].Stat. Prob.Lett.,1997,32:425-430.

[4]Peng Shige,Yang Zhe.Anticipated backward stochastic differential euquations[J].Ann.Prob.,2009,37,877-902.

[5]Hamad`ene S.Multi-dimensional BSDE with uniformly continuous coefficients[J].Bernoulli,2003,9:571-534.

[6]Fan Shengjun,Jiang Long.Existence and uniqueness result for a backward stochastic differential equation whose generator is Lipschitz continuous in y and uniformly continuous in z[J].J.Appl. Math.Comput.,2011,36(1):1-10.

[7]Fan Shengjun,Ma Ming Jiang,Song Xing.On the levi type theorem for minimal solutions of bsde with continuous coefficients E[J].J.Math.,2011,31(2):245-250.

[8]Jia Guangyan.Some uniqueness results for one-dimensional BSDEs with uniformly continuous coefficients[J].Stat.Prob.Lett.,2009,79(4):436-441.

[9]Situ R.On solutions of backward stochastic differential equations with jumps and applications[J]. Stoch.Proc.Appl.,1997,66(2):209-236.

[10]Royer M.Backward stochastic differential equations with jumps and related non-linear expectations[J].Stoch.Proc.Appl.,1997,66:209-236.

[11]Pardoux E,Peng Shige.Adapted solution of backward stochastic differential equation[J].Syst.Cont. Lett.,1990,4:55-61.

[12]Peng Shige.Backward stochastic differential equation and exact controllability of stochastic control systems[J].Prog.Nat.Sci.,1994,4(3):274-284.

[13]Peng Shige.Nonlinear expectations,nonlinear evaluations and risk measures.In stochastic methods in Finance[M].Berlin:Lecture Notes Math.Springer,2004.

[14]Peng Shige,Xu Mingyu.Reflected BSDE with a constraint and its applications in an incomplete market[J].Bernoulli,2010,16(3):614-640.

一類特殊的延遲倒向隨機微分方程的最小解

凃淑恒1,廖俊俊2
(1.河南工業大學理學院,河南鄭州450002)
(2.華中科技大學數學與統計學院,湖北武漢430074)

本文研究一類特殊的延遲倒向隨機微分方程最小解的相關問題.當假設生成子滿足連續性假設和類似線性增長條件時,證明了最小解的存在性.本文推廣了最小解存在的一般假設條件,這里假設要弱于之前的文獻,然而本文得到了更好的引理,并且得到了相同的結論.

延遲倒向隨機微分方程;最小解;比較定理

MR(2010)主題分類號:60H99;60G99O211.63

date:2014-09-05Accepted date:2014-11-05

Supported by National Natural Science Foundation of China(10671182).

Biography:Tu Shuheng(1986-),female,born at Xinyang,Henan,doctor,major in probability,stochastic analysis.

Liao Junjun.

主站蜘蛛池模板: 国产精品自在线天天看片| 看av免费毛片手机播放| 天堂久久久久久中文字幕| 在线视频亚洲色图| 国产在线观看99| 永久免费精品视频| 热久久综合这里只有精品电影| 亚洲人在线| 男人天堂亚洲天堂| 国产人前露出系列视频| 国产青青草视频| 97精品伊人久久大香线蕉| 免费视频在线2021入口| 国产精品一老牛影视频| 国产黄色视频综合| 国产一区二区三区免费观看| 综合色亚洲| 亚洲日本一本dvd高清| 久久亚洲黄色视频| 五月婷婷亚洲综合| 国产真实二区一区在线亚洲| 精品无码国产自产野外拍在线| 久久亚洲国产一区二区| 国产精品香蕉在线| 欧美精品成人一区二区视频一| 亚洲一区免费看| 尤物特级无码毛片免费| 亚洲成A人V欧美综合天堂| 91视频区| 91丨九色丨首页在线播放| 高潮毛片无遮挡高清视频播放| 1024国产在线| 国产91九色在线播放| 亚洲中文字幕在线观看| 国产男女免费视频| 国产第一福利影院| 91视频精品| 久久精品亚洲热综合一区二区| av一区二区三区在线观看| 无码国产伊人| 日韩欧美国产成人| 9久久伊人精品综合| 97影院午夜在线观看视频| 国产二级毛片| 亚洲丝袜中文字幕| 亚洲国产91人成在线| 亚洲欧美精品日韩欧美| 精品国产一二三区| 久久99国产乱子伦精品免| 成人午夜久久| 尤物成AV人片在线观看| 四虎影视8848永久精品| 欧美中文字幕一区| 久久中文电影| 亚洲国内精品自在自线官| AV无码无在线观看免费| 国产精品播放| 亚洲一区毛片| 日韩成人免费网站| 国产一区自拍视频| 精品一區二區久久久久久久網站| 97一区二区在线播放| 亚洲视频免费在线| 男女性色大片免费网站| 18禁影院亚洲专区| 国产欧美视频一区二区三区| 欧美另类图片视频无弹跳第一页| 一级做a爰片久久毛片毛片| 亚洲精品无码抽插日韩| 青青青国产视频| 99精品视频在线观看免费播放| 欧美人与动牲交a欧美精品| 超碰aⅴ人人做人人爽欧美 | 伊人久久大香线蕉影院| 91极品美女高潮叫床在线观看| 久久精品这里只有国产中文精品 | 亚洲精品无码在线播放网站| 极品av一区二区| 91久久偷偷做嫩草影院电| 国产三级国产精品国产普男人| 亚洲欧洲免费视频| 人妻中文字幕无码久久一区|