999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

PERIODIC SOLUTIONS OF DAMPED IMPULSIVE SYSTEMS

2016-10-13 08:12:11JIANGLixinDINGWei
數(shù)學(xué)雜志 2016年5期
關(guān)鍵詞:系統(tǒng)

JIANG Li-xin,DING Wei

(1.Department of Mathematics and Physics,Nantong Normal College,Nantong 226006,China)

(2.School of Sciences,Nantong University,Nantong 226007,China)

PERIODIC SOLUTIONS OF DAMPED IMPULSIVE SYSTEMS

JIANG Li-xin1,DING Wei2

(1.Department of Mathematics and Physics,Nantong Normal College,Nantong 226006,China)

(2.School of Sciences,Nantong University,Nantong 226007,China)

In this paper,we study the existence of periodic solutions of damped impulsive problems via variational method.By presenting a new approach,we obtain the critical points of impulsive systems with periodic boundary under some assumptions,which generalizes the known results and enriches the research methods of impulsive problems.

critical points;impulses;periodic boundary;constraint

2010 MR Subject Classification:45M15;65L10

Document code:AArticle ID:0255-7797(2016)05-0920-09

1 Introduction

Impulsive differential equations arising from the real world describe the dynamic of processes in which sudden discontinuous jumps occur.In recent years,impulsive problems attracted the attention of a lot of researchers and in consequence the number of papers related to this topic is huge,see[1-6]and their references.For a second order differential equation x'+f(t,x,x')=0,one usually considers impulses in the position x and the velocity x'. However,in the motion of spacecraft one has to consider instantaneous impulses dependent only on the position,and the result in jump is discontinuous in velocity,but with no change in position[7,8].Let t0=0<t1<t2<···<tp<tp+1=2π.Recently,the following Dirichlet boundary value problems with impulses

were studied by variational method in[9,10],where f:[0,2π]×R→R is continuous,g∈C[0,2π],and the impulse functions Ij:R→R is continuous for every j.After that,impulsive problems(1.1)-(1.2)with periodic boundary

was also investigated in[6]when g(t)≡0.

Generally,people are used to obtain the critical points of impulsive problems via Mountain pass theorem or Saddle point theorem.In this paper,we use Lagrange multipliers theorem,that is conditional extremum theory,to investigate impulsive problems(1.1)-(1.2)with periodic boundary

The organization of the paper is as follows.In Section 2,we give variational structure of impulsive problem(1.1)-(1.2)-(1.5).In Section 3,critical points corresponding to periodic solutions of impulsive problems(1.1)-(1.2)are obtained by constrain theory.

2 Variational Structure

In this section,we always assume that f:R×R→R is 2π-periodic in t for all x∈R and satisfies the following carath′eodory assumptions:

(1)for every x∈R,f(·,x)is measurable on[0,2π];

(2)for a.e.t∈[0,2π],f(t,·)is continuous on R;

Multiplying equation(1.1)by eG(t),we can see that impulsive problem(1.1)+(1.2)+(1.5)is equivalent to

We now investigate impulsive system(2.1)+(1.2)+(1.5).Define Hilbert space

Proposition 2.1 Under our assumptions,functional φ(x)is weakly lower semi-continuous on

The following result is evident.

Proposition 2.3 Under our assumptions,if x∈is a critical point of φ,then x is one 2π-periodic solution of problem(2.1)+(1.2)+(1.5).

Proof Let x be a critical point of φ in,then for every v∈we have

We now check that x satisfies(2.1)+(1.2)+(1.5).

It implies that(eG(t)x')'+eG(t)f(t,x)=0 a.e.t∈[tj,tj+1].Hence x satisfies

That is,x satisfies equation(2.1).

0.By integration by parts,we have

Combining with(2.2),which implies that

Hence

This is just condition(1.2).

On the other hand,in(2.2),let v=1,then

Thus we complete the proof.

3 Critical Points in Constraints

The following Lagrange multipliers theorem is well known(see Theorem 2.1 in[11]or Theorem 3.1.31 in[12]).

Lemma 3.1 Let φ∈C1,R)and M={x∈:ψj(x)=0,j=1,···,n},where ψj∈C1,j=1,···,n,andare linearly independent foreach x∈Then if u∈M is a critical point of φ|M,there exist λj∈R j=1,···,n, such that

We now give the following minimization principle in constraint M.

Lemma 3.2(see Theorem 1.1 in[11])Let M be a weakly closed subset of a Hilbert space X.Suppose a functional φ:M→R is

(i)weakly lower semi-continuous,

(ii)φ(u)→+∞as‖u‖→∞,u∈M, then φ is bounded from below and there exists u0∈M such that φ(u0)=

Using the above lemmas,the author of[11]consider the following Neumann problem

for some suitable ??RNand f(u)under natural constraints(see[11]).Inspired by his work,in this section,we take our attention to find the critical points of functional φ over a set of constraints M?

and

Besides those conditions given to f(t,x),g(t)and Ij(x),j=1,···,k in Section 2,we also assume that there exist constants α,β>0,ξj∈R,j=1,···,k,such that

It is easy to see that

where constant 0≤η<2 and the function a is from carath′eodory assumption(3).

For convenience,we denote A=max{eG(t)}and B=min{eG(t)},then A,B>0.

Theorem 3.3If above assumptions hold and 6B-A(2‖b‖1+pβ)π>0,then problem (1.1)-(1.2)-(1.5)has at least one solution.

Remark 3.4We only need to prove that problem(2.1)-(1.2)-(1.5)has at least one solution.

Then by conditions(3.6)and(3.7),one has Γ'(x)/=0,which indicates that Γ'(x)linearly independent for each x∈

Remark 3.5It is easy to see that,by conditions(3.5)-(3.7),we have that,?u∈there exists a unique c∈R such that u+c∈M.In fact,?u∈one has that u is continuous and the functioneG(tj)Ij(u(tj)+c)defined on R is continuous and strictly increasing,moreover

Lemma 3.6Under our assumptions,is a critical point of φ if and only if x∈M and x is a critical point of φ|M.

i.e.,x∈M,and hence x is a critical point of φ|M.

On the other hand,if x is a critical point of φ|M,by Lemma 3.1,there exists λ∈Rsuch that for every

Choosing v=1 and observing that x∈M,we have

which follows that λ=0 since>0 and≤0.Putting it into(3.9),one has φ'(x)=0.

Thus we complete the proof.

To functional

we have the following results.

Lemma 3.7Under our assumptions,we have

(i)Φ(u+c)≤Φ(u),?u+c∈M,where u∈,c∈R.

(ii)Let un+cn∈M,where un∈and cn∈R.Then if‖un+cn‖→∞,one has‖un‖→∞.

The above two inequalities give that

which follows(i).

Next,we turn to prove(ii).Define functional Ψ:×R→R by the following

Because of the strict increase of Ψ(u,·),when n is big enough,we have

0=Ψ(v,c(v))<Ψ(v,cn)=Ψ(v,cn)-Ψ(vn,cn)

as n→∞.It is contradictory.

Thus we complete the proof.

Proof of Theorem 3.3Without loss of generality,we may assume that a(x)≤x2in condition(3.8)and ξj=0,j=1,2,···,p in condition(3.7).Then under our assumptions,one has

It implies that

Since 6B-A(2‖b‖1+pβ)π>0,by(3.4)and(ii)of Lemma 3.7,we have φ(u+c)→+∞as ‖u+c‖→∞,u+c∈M.

On the other hand,M is weakly closed and φ is weakly lower semi-continuous,therefore by Lemma 3.2,there exists at least one critical point x∈M of φ|M.Then by Lemma 3.6,we complete the proof.

References

[1]Nieto J J.Basic theory for nonresonance impulsive periodic problems of first order[J].J.Math. Anal.Appl.,1997,205(2):423-433.

[2]Dong Y.Sublinear impulse effects and solvability of boundary value problems for differential equations with impulses[J].J.Math.Anal.Appl.,2001,264(1):32-48.

[3]He Z,Yu J.Periodic boundary value problems for first-order impulsive ordinary differential equations[J].J.Math.Anal.Appl.,2002,279(1):1223-1232.

[4]Nieto J J,O'Regan D.Variational approach to impulsive differential equations[J].Nonl.Anal. (RWA),2009,10(2):680-690.

[5]Zhang X Z,Liu B.Existence of positive periodic solutions to a nonautonomous delay differential equation with impulses[J].J.Math.,2007,27(2),157-164.

[6]Ding W,Qian D.Periodic solutions for sublinear systems via variational approach[J].Nonl.Anal. (RWA),2010,11(4):2603-2609.

[7]Carter T E.Optimal impulsive space trajectories based on linear equations[J].J.Optim.The.Appl.,1991,70(2):277-297.

[8]Carter T E.Necessary and sufficient conditions for optimal impulsive rendezvous with linear equations of motion[J].Dynam.Contr.,2000,10(3):219-227.

[9]Nieto J J.Variational formulation of a damped Dirichlet impulsive problem[J].Appl.Math.Lett.,2010,23(8):940-942.

[10]Xiao J,Nieto J J.Variational approach to some damped Dirichlet nonlinear impulsive differential equations[J].J.Franklin Inst.,2011,348(2):369-377.

[11]David G C.An invitation to variational methods in differential equations[M].Boston,Basel,Berlin:Birkh¨auser,2007.

[12]Berger M S.Nonlinearity and functional analysis[M].San Diego,US:Els.Sci.Publish.Co.Inc.,1977.

[13]Mawhin J,Wilem M.Critical point theory and Hamiltonian systems[M].Berlin,Heidelberg,New York:Springer-Verlag,1989.

帶阻尼項的脈沖系統(tǒng)的周期解

姜黎鑫1,丁衛(wèi)2
(1.南通師范高等??茖W(xué)校數(shù)理系,江蘇南通226006)
(2.南通大學(xué)理學(xué)院,江蘇南通226007)

本文利用變分法研究了帶阻尼項的脈沖系統(tǒng)的周期解.采用一種新的方法,在一些條件下證明了帶周期邊界條件的脈沖系統(tǒng)存在臨界點(diǎn).本文不僅推廣了已有的結(jié)果而且還豐富了研究脈沖系統(tǒng)的方法.

臨界點(diǎn);脈沖;周期邊界;限制

MR(2010)主題分類號:45M15;65L10O175.13;O176.3

date:2016-03-15Accepted date:2016-04-22

Supported by National Natural Science Foundation of China(11501308).

Biography:Jiang Lixin(1982-),female,born at Qidong,Jiangsu,master,major in ordinary differential equation.

猜你喜歡
系統(tǒng)
Smartflower POP 一體式光伏系統(tǒng)
WJ-700無人機(jī)系統(tǒng)
ZC系列無人機(jī)遙感系統(tǒng)
北京測繪(2020年12期)2020-12-29 01:33:58
基于PowerPC+FPGA顯示系統(tǒng)
基于UG的發(fā)射箱自動化虛擬裝配系統(tǒng)開發(fā)
半沸制皂系統(tǒng)(下)
FAO系統(tǒng)特有功能分析及互聯(lián)互通探討
連通與提升系統(tǒng)的最后一塊拼圖 Audiolab 傲立 M-DAC mini
一德系統(tǒng) 德行天下
PLC在多段調(diào)速系統(tǒng)中的應(yīng)用
主站蜘蛛池模板: 午夜人性色福利无码视频在线观看| 亚洲一区国色天香| 久久久受www免费人成| 亚洲无码熟妇人妻AV在线| 一级全黄毛片| 国产欧美日韩va| 国产成人一区在线播放| 毛片三级在线观看| 日韩久久精品无码aV| 国产成人1024精品下载| 91久久青青草原精品国产| 鲁鲁鲁爽爽爽在线视频观看| 日韩欧美91| 亚洲天堂视频在线观看免费| 久久国产精品麻豆系列| AV熟女乱| 最新日本中文字幕| 久久国产黑丝袜视频| 免费又爽又刺激高潮网址| 超薄丝袜足j国产在线视频| 国产成人免费视频精品一区二区| 亚洲AV无码久久天堂| 国产成人精品一区二区免费看京| 青青青国产视频| 国产综合网站| 婷婷六月综合网| 久久人体视频| 久久国产高清视频| 国产成人夜色91| 五月天久久综合国产一区二区| 日韩国产欧美精品在线| 色婷婷成人网| 中文字幕2区| 91麻豆久久久| 亚洲午夜久久久精品电影院| 午夜视频日本| 成年女人a毛片免费视频| 玩两个丰满老熟女久久网| 国产精品手机视频| 欧美一级黄片一区2区| 久久综合伊人 六十路| 亚洲天堂视频网站| 国产精品网址在线观看你懂的| 国产视频久久久久| 亚洲日本中文字幕天堂网| 亚洲免费人成影院| 精品在线免费播放| 久久精品国产亚洲麻豆| 亚洲欧美在线看片AI| 国产剧情一区二区| 特级做a爰片毛片免费69| 成人欧美在线观看| 伊人天堂网| 鲁鲁鲁爽爽爽在线视频观看| 天天综合天天综合| 制服丝袜一区| 国产最爽的乱婬视频国语对白 | 高潮毛片无遮挡高清视频播放| 成人午夜天| 国产91在线|中文| 一级做a爰片久久毛片毛片| 亚洲欧美在线精品一区二区| 亚洲日韩AV无码精品| 亚洲欧美日韩另类| 干中文字幕| 亚洲视频在线网| 国产精品福利导航| 欧美日韩免费| 狠狠做深爱婷婷久久一区| 狂欢视频在线观看不卡| 女人18毛片久久| 国产理论最新国产精品视频| 久久国产精品国产自线拍| 成人福利在线视频免费观看| 亚洲视频在线青青| 狠狠亚洲五月天| 精品国产aⅴ一区二区三区 | 婷婷综合色| 亚洲浓毛av| 色久综合在线| 精品国产欧美精品v| 亚洲一区二区日韩欧美gif|