999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

結核分枝桿菌分子分型技術的研究和應用

2016-07-28 01:57:45李道群夏雪山宋玉竹張阿梅
中國人獸共患病學報 2016年1期

李道群,夏雪山,宋玉竹,張阿梅

?

結核分枝桿菌分子分型技術的研究和應用

李道群1,2,夏雪山1,2,宋玉竹1,2,張阿梅1,2

1.昆明理工大學生命科學與技術學院,昆明650500;2.云南省分子醫學研究中心,昆明650500

摘要:結核分枝桿菌是引發結核病的病原菌。近年,結核病發病有增加趨勢,特別是結核桿菌耐藥株增多,這些都提示其分子流行病學特點發生了改變。對不同基因型的結核病患者選取不同的治療方案,是當今個性化醫療和結核病有效治療的必然要求。目前廣泛使用的結核分枝桿菌基因分型方法主要有插入序列6110限制性片段長度多態性、間隔區寡核苷酸分型法、多位點串聯重復序列分析、全基因組測序技術、耐藥相關基因突變譜分析、基因芯片分型技術等,這些方法在臨床和基礎研究中的應用各有利弊。本文對結核分枝桿菌的基因分型技術和應用作一綜述,以期為臨床工作者和基礎研究人員選擇適合的分型技術提供理論依據。

關鍵詞:結核分枝桿菌;分型技術;基因分型

Supported by the Yunnan Science and Technology Commission(Nos. 2012AE003 and 2013BC009) and the Training Program Foundation for Talent of Kunming University of Science and Technology(No. KKSY201226148)

目前,結核病仍然是危害全人類健康的重要感染性疾病之一[1]。近年來由于流動人口增加、結核耐藥菌株增多、HIV共感染的加劇,使得結核病的發病率和死亡率呈現逐年攀升的趨勢。2013年全球結核死亡患者達到130萬,亞洲地區就達占到58%(僅我國就占到全球的10%左右)。而傳統的流行病學研究已不能很好地揭示其傳播規律,因此分子生物學與流行病學研究方法相結合產生的分子流行病學方法在結核分枝桿菌分型方面表現出明顯優勢。基因分型就是利用這些基因序列多樣性對分枝桿菌菌株間差異進行區分,以了解結核病傳播、病原演變情況、尋找結核患者耐藥產生原因、分析流行病學事件(如:社會性暴發和醫源性感染),并且對于結核病的預防、治療和控制具有重要的意義。提供簡便、快速、特異、適合臨床應用的檢查技術是目前研究的重點之一,所以本文就國內外建立的的MTB基因分型技術和應用進行綜述。

1基于重復序列IS6110的限制性片段長度多態性分型技術

結核分枝桿菌基因組中存在許多DNA重復序列,常用于結核分型研究的重復片段主要為IS6110和IS1081[2-8](表1)。IS6110是一段自然發生的轉座序列,能夠進行自我復制,屬于IS3家族成員,通常為8~20個拷貝,但也存在零拷貝數的情況[5]。IS1081出現在于牛結核分枝桿菌中,屬于IS256家族,通常有5~7個拷貝,“指紋”圖譜具有多態性[6]。Collins等[9]在牛結核分枝桿菌中發現了IS1081片段,該片段與IS61110不同,在人型復合分枝桿菌中拷貝數僅為6個。IS1081在牛結核分枝桿菌中具有多態性,因此可以作為區分牛型與人型結核分枝桿菌的鑒定依據。IS6110序列拷貝數之間的差異構成了結核分枝桿菌特有的“指紋”圖譜。該分型方法是先提取結核桿菌DNA,用限制性內切酶PvuII進行消化;經過電泳分離(可產生16-40個條帶)后,將片段轉移到雜交膜上,用標記的探針與之雜交。與探針雜合的膜上的DNA片段即可被檢測到,最終形成RFLP“指紋”圖譜[7-8,10]。雖然IS6110-RFLP(Isertion-element 6110 restriction fragment length polymorphism)是經典的結核分枝桿菌基因分型技術,但是有自身的局限性,如樣本要求量大(≥3 μg);實驗結果差異性較大;不適于拷貝數過低(≤5個)或者過高菌株的分離等。因為通過該方法獲得的樣本信息量太少或者指紋譜過于復雜,因而不能精準區分結核分枝桿菌復合物中的菌株[11-12]。Liebana等[13]對339株結核分枝桿菌進行IS6110-RFLP分析,高達35株未見IS6110序列PCR條譜,使鑒定難以進行。

表1 插入序列IS6110和IS1081的基本信息

2間隔區寡核苷酸基因分型

1996年,人們開始應用間隔區寡核苷酸基因分型(Spoligotyping)方法對IS6110低拷貝數的結核菌進行分型研究[14]。Hermans等[15]在研究減毒牛型結核桿菌(Mycobacteriumbovis)制成的卡介苗菌株(BacillusCalmette-Guérin,BCG)時發現其基因組內存在多重直接可變重復序列(Direct variable repeat sequence,DVRS),這個區域包含保守的36 bp DNA直接重復序列(DR)和35~41 bp的間隔區(spacer)[16-17]。直接重復區域多數為成簇的規律間隔的短回文重復序列(Clustered regularly interspaced short palindromic repeats,CRISPRs),存在于所有的結核分枝桿菌復合群中,可達50個拷貝。目前,DVRS含有94個特異性的間隔區[18],間隔序列的存在與缺失可以作為分子流行病學分析的標記物。Spoligotyping主要對43個位于直接重復區域中間隔序列的存在或缺失進行劃分,將合成的43個間隔序列寡核苷酸探針按順序固定于雜交膜上,與待測PCR產物進行雜交,洗膜后用化學發光染料進行檢測[19]。Spoligotyping分型商業化試劑盒較多,整個檢測過程數小時即可完成,并可與Spoligotyping分型數據庫SploDB4及SITVIT-WEB國際多位點遺傳標志物數據庫[20](收集了來自153個國家的結核分型數據,僅Spoligotyping亞型數據就有7 105個)中的數據進行比對分析。Liu等[21]采用Spoligotyping對“北京家族”亞型進行研究,該方法顯示出其特有的優勢,單獨用于分型鑒定時分辨率達到11.90%(低于12位點VNTR的99.84%),當與VNTR分型技術聯合使用時,分辨率高達99.89%。目前Spoligotyping分型與IS6110-RFLP或MLVA的組合已經成為許多國家結核分枝桿菌基因分型的基本手段之一[22]。

3多位點數目可變串聯重復序列基因分型技術

在高等真核生物進化及種群的遺傳進化研究中,小衛星DNA又稱可變數目串聯重復序列(Variable number tandem repeats,VNTR)和微衛星DNA(Microsatellite DNA)都是重要的研究工具[23]。結核分枝桿菌基因組存在很多散在分布的重復單位(Mycobacterial interspersed repetitive units,MIRU),這些是結核分枝桿菌復合群的多位點串聯重復序列,多數長度為51~77 bp。MIRU以串聯形式散在分布于結核分枝桿菌復合群基因組中,其重復序列的拷貝數在不同菌株中存在差異,根據這一特點可以對結核分枝桿菌進行分型。近年,結核分枝桿菌基因序列(Mycobacterium tuberculosis,Mtub),精確串聯重復序列(Exact Tandem Repeats,ETR)和貝爾法斯特奎恩大學序列(Queen’s University Belfast,QUB)也較多的應用于基因分型技術,三者也是VNTR的一種形式,含有不同拷貝數形態的串聯重復序列,3種序列存在重疊現象(如MIRU 4與ETR D,MIRU 31與ETR E,MIRU 27與QUB-5)。該方法對每株結核分枝桿菌復合群鑒定,并采用BioNumerics系列軟件進行等位基因多樣性、遺傳距離和基因簇的分類以便于各個研究組間進行比較。此方法在辨別IS6110拷貝數很低(<6)的分離株時非常有效,且分辨率要高于IS6110-RFLP和Spoligotyping單獨分型[24]。隨著MIRU-VNTR基因分型所用重復序列的增多,分型能力也逐漸增強。Alonso-Rodriguez等[25]研究發現15個片段的MIRU-VNTR分型較12個片段分型效果有所提高,分辨率由97.8%提高至99.5%,成簇率由57.5%降至34.4%。目前,發現的41個高度保守的MIRU位點中,12個位點具有重復序列數目多態性,可以用于基因分型點[26](http://minisatellites.u-psud.fr/)。分型位點的組合方式很多,多含有12個MIRU位點,6個ETR位點,12個QUB位點和13個Mtub位點[4, 27-30]。國際上比較公認分辨力最高的3種VNTR位點組合是最早的12位點、歐洲的15位點和美國推薦的24位點分型方法(表2)[31-33]。MIRU分型分為人工分型方法和自動化分型方法兩類。人工分型方法是先電泳分離PCR目的產物,然后圖譜軟件分析得出結果或人工直接讀取。該方法適合對重復單元較大的位點進行分析,對于重復單元小于40 bp位點較難進行區分,因此人工分型方法重復性較低,不利于研究組間的結果比較。自動化分型方法利用基因分析儀檢測PCR產物大小,準確性高、重復性好,該方法已用于人類基因組中的短串聯重復序列分析[34]。此外,自動化分型方法可進行多重PCR擴增,分別在引物的5′端用不同的熒光染料進行標記,便于后續的分析。但自動化分型方法所需儀器和試劑較昂貴,每個樣本的分析成本比人工分型法高出約5倍,不利于大規模開展。鑒于這兩種分析方法各自的優缺點,研究者可以根據自己選擇的MLVA和實驗室具備的條件進行取舍。

表2 MIRU-VNTR基因分型24位點信息

注:表中基因位點參照菌株H37Rv基因組比對。

Note: The reference strain is H37Rv.

4全基因組測序技術

自從20世紀70年代Sanger發明了第一代測序技術以來,測序技術得到了極快的發展,現在全基因組測序技術(Whole-genome sequencing)已廣泛的應用于科研、醫療和分子流行病學等研究中,該技術的應用主要體現在4個方面:1)通過測序可以獲得結核分枝桿菌的全基因組序列信息并進行菌種鑒定。Zhou等[35]利用測序得到的基因組序列進行核苷酸等長區域(1 000~10 000 bp)劃分,每個區域隨機核苷酸字符串(k,1

5耐藥相關基因突變譜分析

隨著結核分枝桿菌臨床耐藥株的增多,對耐藥菌株進行分型從而了解其起源和流行特點顯得尤為重要。近些年來,許多學者將耐藥基因突變位點作為遺傳標志物對結核分枝桿菌進行分型,越來越多的耐藥基因突變位點被報道和研究,耐藥突變譜的完善將有利于臨床結核病的防治和新型抗結核藥物的研發。Sreevatsan等[39]采用過氧化氫酶-過氧化物酶編碼基因KatG463CTC和DNA回旋酶α亞單位編碼基因gyrA95ACC作為分類依據,將MTB復合群劃分為三組亞型(PGG1,PGG2,PGG3)。最近,Sengstake等[40]采用多重連接探針擴增技術(Multiplex ligation-dependent probe amplification,MLPA)和GenoTypeMTBDR plus試劑盒對耐藥結核分枝桿菌進行檢測,發現耐藥性基因突變的發生與基因簇的劃分存在聯系,其是否可以作為菌株基因亞型的分子標志物還有待研究。目前對于結核耐藥基因突變和其它分子標志物組合進行結核基因簇的分析尚無完全統一的標準。

6基因芯片分型技術

隨著基因測序技術的發展和多個物種基因組序列測定完成,20世紀80年代末基因芯片(gene chip)技術應運而生。基因芯片(Gene-chip)又稱DNA微陣列(DNA microarray),該技術是遺傳學、生物化學、分子生物學等多學科的交叉融合,實現了樣本檢測和分析過程的連續化、集成化和微型化。結核分枝桿菌基因芯片其原理是根據結核分枝桿菌全基因組較為保守的基因序列和單核苷酸多態性位點,如Hsp65、16S rRNA、23S rRNA 、IS6110和IS1081等的保守序列設計分子探針、將其有序地固定于經過處理的載體上,然后加入標記的待測樣品進行雜交,通過相應熒光檢測裝置獲取雜交信號,來分析目的分子的有無和含量等,從而判斷受檢樣品的菌株類型。目前已有多種結核分枝桿菌檢測和分型的基因芯片應用于臨床和基礎研究,如耐藥基因突變檢測芯片、全基因組DNA測序芯片和菌種分型鑒定芯片等。Vernet等[41]研究者采用DNA微陣列技術對臨床結核分枝桿菌樣本進行研究,發現采用直接重復序列間隔區多態性DNA微陣列芯片(目前已經報道出94個特異的間隔區位點)存在位點差異較小的局限性,不足以對樣本進行分型。而Venkataraman等[42]首次描述了應用原位合成寡核苷酸微陣列對結核分枝桿菌進行分型的方法,該微陣列包括結核分枝桿菌標準株H37Rv已知的基因和20個未注明的基因,覆蓋率達到99%,經過對3862基因位點的分析,獲取更為全面、特異性更強的位點信息,這對于結核分枝桿菌的流行病學研究及其未知基因的功能研究等方面具有重要的科研價值。

表3 不同分型技術之間的優缺點比較

7結語

盡管結核分枝桿菌基因分型技術近來發展迅猛,但是每種分型技術仍存在其不足及有待完善的地方,因此在實際應用中往往是采用數種組合的方案進行,現在基因芯片技術和多種分型技術的組合已經成為當今MTB分型的主流。已經基本實現了對結核病的爆發起源、變化規律、分布特點、再感染危險性以及院內感染的可能性等[43-45]的了解。Alito等[46]對結核病患者采用IS6110-RFLP指紋圖譜并未發現關聯,而使用Spoligotyping卻解釋了結核患者之間傳播的內在聯系。因此,新的技術出現往往會彌補前一個技術的不足。對我國來講,由于復雜的地域環境、多樣的結核病原成因及變異株家族基因簇間遺傳的差異,以及每種分型技術優點和弊端(表3),完善并逐漸建立適合于我國國情的一種新標準方法,達到分辨率高、特異性好、操作方便快速,并可以提供許多的大數據庫資源,是今后的發展方向,也是解決我國結核病問題的方法。

參考文獻:

[1]McHugh TD. World TB Day 2014: Reach the three million: a TB test, treatment and cure for all[J].Trans R Soc Trop Med Hyg, 2014, 108(3): 119-120. DOI: 10.1093/trstmh/tru006

[2]Boyle DS, McNerney R, Teng Low H, et al. Rapid detection ofMycobacteriumtuberculosisby recombinase polymerase amplification[J].PLoS One, 2014, 9(8): e103091. DOI: 10.1371/journal.pone.0103091

[3]Casart Y, Turcios L, Florez I, et al. IS6110 in oriC affects the morphology and growth ofMycobacteriumtuberculosisand attenuates virulence in mice[J].Tuberculosis(Edinb), 2008, 88(6): 545-552. DOI: 10.1016/j.tube.2008.03.006

[4]van Embden JD, Cave MD, Crawford JT, et al. Strain identification ofMycobacteriumtuberculosisby DNA fingerprinting: recommendations for a standardized methodology[J].J Clin Microbiol, 1993, 31(2): 406-409.

[5]van Soolingen D, de Haas PE, Hermans PW, et al. Comparison of various repetitive DNA elements as genetic markers for strain differentiation and epidemiology ofMycobacteriumtuberculosis[J].J Clin Microbiol, 1993, 31(8): 1987-1995.

[6]van Soolingen D, Hermans PW, de Haas PE, et al. Insertion element IS1081-associated restriction fragment length polymorphisms inMycobacteriumtuberculosiscomplex species: a reliable tool for recognizingMycobacteriumbovisBCG[J].J Clin Microbiol, 1992, 30(7): 1772-1777.

[7]Green E, Obi LC, Okoh AI, et al. IS6110 restriction fragment length polymorphism typing of drug-resistantMycobacteriumtuberculosisstrains from northeast South Africa[J].J Health Popul Nutr, 2013, 31(1): 1-10.

[8]Suffys PN, Ivens de Araujo ME, Rossetti ML, et al. Usefulness of IS6110-restriction fragment length polymorphism typing of Brazilian strains ofMycobacteriumtuberculosisand comparison with an international fingerprint database[J].Res Microbiol, 2000, 151(5): 343-351.

[9]Collins DM, Hilbink F, West DM, et al. Investigation ofMycobacteriumparatuberculosisin sheep by faecal culture, DNA characterisation and the polymerase chain reaction[J].Vet Rec, 1993, 133(24): 599-600.

[10]Yang ZH, de Haas PE, van Soolingen D, et al. Restriction fragment length polymorphismMycobacteriumtuberculosisstrains isolated from Greenland during 1992: evidence of tuberculosis transmission between Greenland and Denmark[J].J Clin Microbiol, 1994, 32(12): 3018-3025.

[11]Kato-Maeda M, Metcalfe JZ, Flores L. Genotyping ofMycobacteriumtuberculosis: application in epidemiologic studies[J].Future Microbiol, 2011, 6(2): 203-216. DOI: 10.2217/fmb.10.165

[12]Asgharzadeh M, Kafil HS, Roudsary AA, et al. Tuberculosis transmission in Northwest of Iran: using MIRU-VNTR, ETR-VNTR and IS6110-RFLP methods[J].Infect Genet Evol, 2011, 11(1): 124-131. DOI: 10.1016/j.meegid.2010.09.013

[13]Liebana E, Aranaz A, Francis B,et al. Assessment of genetic markers for species differentiation within theMycobacteriumtuberculosiscomplex[J].J Clin Microbiol, 1996, 34(4): 933-938.

[14]Aranaz A, Liebana E, Mateos A, et al. Spacer oligonucleotide typing ofMycobacteriumbovisstrains from cattle and other animals: a tool for studying epidemiology of tuberculosis[J].J Clin Microbiol, 1996, 34(11): 2734-2740.

[15]Hermans PW, van Soolingen D, van Embden JD. Characterization of a major polymorphic tandem repeat inMycobacteriumtuberculosisand its potential use in the epidemiology ofMycobacteriumkansasiiandMycobacteriumgordonae[J].J Bacteriol, 1992, 174(12): 4157-4165.

[16]Goyal M, Saunders NA, van Embden JD, et al. Differentiation ofMycobacteriumtuberculosisisolates by spoligotyping and IS6110 restriction fragment length polymorphism[J].J Clin Microbiol, 1997, 35(3): 647-651.

[17]Driscoll JR. Spoligotyping for molecular epidemiology of theMycobacteriumtuberculosiscomplex[J].Methods Mol Biol, 2009, 551: 117-128. DOI: 10.1007/978-1-60327-999-4_10

[18]van der Zanden AG, Kremer K, Schouls LM, et al. Improvement of differentiation and interpretability of spoligotyping forMycobacteriumtuberculosiscomplex isolates by introduction of new spacer oligonucleotides[J].J Clin Microbiol, 2002, 40(12): 4628-4639.

[19]Kamerbeek J, Schouls L, Kolk A, et al. Simultaneous detection and strain differentiation ofMycobacteriumtuberculosisfor diagnosis and epidemiology[J].J Clin Microbiol, 1997, 35(4): 907-914.

[20]Demay C, Liens B, Burguiere T, et al. SITVITWEB--a publicly available international multimarker database for studyingMycobacteriumtuberculosisgenetic diversity and molecular epidemiology[J].Infect Genet Evol, 2012, 12(4): 755-766. DOI: 10.1016/j.meegid.2012.02.004

[21]Liu Y, Tian M, Wang XK, et al. Genotypic diversity analysis ofMycobacteriumtuberculosisstrains collected from Beijing in 2009, using spoligotyping and VNTR typing[J].PLoS One, 2014, 9(9): e106787. DOI: 10.1371/journal.pone.0106787

[22]Reves R. Universal genotyping as a tool for establishing successful partnerships for tuberculosis elimination[J].Am J Respir Crit Care Med, 2006, 174(5): 491-492.

[23]Gilmore S, Peakall R, Robertson J. Short tandem repeat(STR) DNA markers are hypervariable and informative in Cannabis sativa: implications for forensic investigations[J].Forensic Sci Int, 2003, 131(1): 65-74.

[24]Supply P,Allix C, Lesjean S, et al. Proposal for standardization of optimized mycobacterial interspersed repetitive unit-variable-number tandem repeat typing ofMycobacteriumtuberculosis[J].J Clin Microbiol, 2006, 44(12): 4498-4510.

[25]Alonso-Rodriguez N, Martinez-Lirola M, Herranz M, et al. Evaluation of the new advanced 15-loci MIRU-VNTR genotyping tool inMycobacteriumtuberculosismolecular epidemiology studies[J].BMC Microbiol, 2008, 8: 34. DOI: 10.1186/1471-2180-8-34

[26]Mazars E, Lesjean S, Banuls AL, et al. High-resolution minisatellite-based typing as a portable approach to global analysis ofMycobacteriumtuberculosismolecular epidemiology[J].Proc Natl Acad Sci U S A, 2001, 98(4): 1901-1906.

[27]Valcheva V, Mokrousov I, Narvskaya O, et al. Utility of new 24-locus variable-number tandem-repeat typing for discriminatingMycobacteriumtuberculosisclinical isolates collected in Bulgaria[J].J Clin Microbiol, 2008, 46(9): 3005-3011. DOI: 10.1128/JCM.00437-08

[28]Mokrousov I,Niemann S, Rastogi N. Special issue on molecular evolution, epidemiology and pathogenesis ofMycobacteriumtuberculosisand other mycobacteria[J].Infect Genet Evol, 2012, 12(4): 601. DOI: 10.1016/j.meegid.2012.02.016

[29]Arnold C. Molecular evolution ofMycobacteriumtuberculosis[J].Clin Microbiol Infect, 2007, 13(2): 120-128.

[30]Kremer K, Arnold C, Cataldi A, et al. Discriminatory power and reproducibility of novel DNA typing methods forMycobacteriumtuberculosiscomplex strains[J].J Clin Microbiol, 2005, 43(11): 5628-5638.

[31]Gibson A, Brown T, Baker L, et al. Can 15-locus mycobacterial interspersed repetitive unit-variable-number tandem repeat analysis provide insight into the evolution ofMycobacteriumtuberculosis[J].Appl Environ Microbiol, 2005, 71(12): 8207-8213.

[32]Feiler C, Fisher AC, Boock JT, et al. Directed evolution ofMycobacteriumtuberculosisbeta-lactamase reveals gatekeeper residue that regulates antibiotic resistance and catalytic efficiency[J].PLoS One, 2013, 8(9): e73123. DOI: 10.1371/journal.pone.0073123

[33]Roring S, Scott AN, Glyn Hewinson R, et al. Evaluation of variable number tandem repeat(VNTR) loci in molecular typing ofMycobacteriumbovisisolates from Ireland[J].Vet Microbiol, 2004, 101(1): 65-73.

[34]Mojtabavi Naeini M, Mesrian Tanha H, Hashemzadeh Chaleshtori M, et al. Genotyping data and novel haplotype diversity of STR markers in the SLC26A4 gene region in five ethnic groups of the Iranian population[J].Genet Test Mol Biomarkers, 2014,18(12): 820-825. DOI: 10.1089/gtmb.2014.0178

[35]Zhou F, Olman V, Xu Y. Barcodes for genomes and applications[J].BMC Bioinformatics, 2008, 9: 546. DOI: 10.1186/1471-2105-9-546

[36]O'Toole RF, Johari BM, Mac Aogain M, et al. Draft genome sequence of the first isolate of extensively drug-resistantMycobacteriumtuberculosisin New Zealand[J].Genome Announc, 2014, 2(3): e00319-14. DOI: 10.1128/genomeA.00319-14

[37]Chernyaeva EN, Shulgina MV, Rotkevich MS, et al. Genome-wideMycobacteriumtuberculosisvariation(GMTV) database: a new tool for integrating sequence variations and epidemiology[J].BMC Genomics, 2014, 15: 308. DOI: 10.1186/1471-2164-15-308

[38]Gardy JL, Johnston JC, Ho Sui SJ, et al. Whole-genome sequencing and social-network analysis of a tuberculosis outbreak[J].N Engl J Med, 2011, 364(8): 730-739. DOI: 10.1056/NEJMoa1003176

[39]Sreevatsan S, Pan X, Stockbauer KE, et al. Restricted structural gene polymorphism in theMycobacteriumtuberculosiscomplex indicates evolutionarily recent global dissemination[J].Proc Natl Acad Sci U S A, 1997, 94(18): 9869-9874.

[40]Sengstake S, Bablishvili N, Schuitema A, et al. Optimizing multiplex SNP-based data analysis for genotyping ofMycobacteriumtuberculosisisolates[J].BMC Genomics, 2014, 15: 572. DOI: 10.1186/1471-2164-15-572

[41]Vernet G, Jay C, Rodrigue M, et al. Species differentiation and antibiotic susceptibility testing with DNA microarrays[J].J Appl Microbiol, 2004, 96(1): 59-68.

[42]Venkataraman B, Vasudevan M, Gupta A. A new microarray platform for whole-genome expression profiling ofMycobacteriumtuberculosis[J].J Microbiol Methods, 2014, 97: 34-43. DOI: 10.1016/j.mimet.2013.12.009

[43]Maciel EL, Prado TN, Peres RL, et al. Guided sputum sample collection and culture contamination rates in the diagnosis of pulmonary TB[J].J Bras Pneumol, 2009, 35(5): 460-463.

[44]Moore DA, Caviedes L, Gilman RH, et al. Infrequent MODS TB culture cross-contamination in a high-burden resource-poor setting[J].Diagn Microbiol Infect Dis, 2006, 56(1): 35-43.

[45]Sola C, Filliol I, Legrand E, et al. Genotyping of theMycobacteriumtuberculosiscomplex using MIRUs: association with VNTR and spoligotyping for molecular epidemiology and evolutionary genetics[J].Infect Genet Evol, 2003, 3(2): 125-133.

[46]Alito A, Morcillo N, Scipioni S, et al. The IS6110 restriction fragment length polymorphism in particular multidrug-resistantMycobacteriumtuberculosisstrains may evolve too fast for reliable use in outbreak investigation[J].J Clin Microbiol, 1999, 37(3): 788-791.

[47]McEvoy CR, Falmer AA, Gey van Pittius NC, et al. The role of IS6110 in the evolution ofMycobacteriumtuberculosis[J].Tuberculosis(Edinb), 2007, 87(5): 393-404.

[48]Lari N,Rindi L, Garzelli C. Identification of one insertion site of IS6110 inMycobacteriumtuberculosisH37Ra and analysis of the RvD2 deletion inM.tuberculosisclinical isolates[J].J Med Microbiol, 2001, 50(9): 805-811.

[49]Warren RM, Sampson SL, Richardson M, et al. Mapping of IS6110 flanking regions in clinical isolates ofMycobacteriumtuberculosisdemonstrates genome plasticity[J].Mol Microbiol, 2000, 37(6): 1405-1416.

[50]Aga RS, Fair E, Abernethy NF, et al. Microevolution of the direct repeat locus ofMycobacteriumtuberculosisin a strain prevalent in San Francisco[J].J Clin Microbiol, 2006, 44(4): 1558-1560.

[51]Warren RM, Streicher EM, Sampson SL, et al. Microevolution of the direct repeat region ofMycobacteriumtuberculosis: implications for interpretation of spoligotyping data[J].J Clin Microbiol, 2002, 40(12): 4457-4465.

[52]Jamieson FB, Teatero S, Guthrie JL, et al. Whole-genome sequencing of theMycobacteriumtuberculosisManila sublineage results in less clustering and better resolution than mycobacterial interspersed repetitive-unit-variable-number tandem-repeat(MIRU-VNTR) typing and spoligotyping[J].J Clin Microbiol, 2014, 52(10): 3795-3798. DOI: 10.1128/JCM.01726-14

[53]Supply P, Mazars E, Lesjean S, et al. Variable human minisatellite-like regions in theMycobacteriumtuberculosisgenome[J].Mol Microbiol, 2000, 36(3): 762-771.

[54]Alonso M, Alonso Rodriguez N, Garzelli C, et al. Characterization ofMycobacteriumtuberculosisBeijing isolates from the Mediterranean area[J].BMC Microbiol, 2010, 10: 151. DOI: 10.1186/1471-2180-10-151

[55]Colangeli R, Arcus VL, Cursons RT, et al. Whole genome sequencing ofMycobacteriumtuberculosisreveals slow growth and low mutation rates during latent infections in humans[J].PLoS One, 2014, 9(3): e91024. DOI: 10.1371/journal.pone.0091024

[56]Mulenga C, Shamputa IC, Mwakazanga D, et al. Diversity ofMycobacteriumtuberculosisgenotypes circulating in Ndola, Zambia[J].BMC Infect Dis, 2010, 10: 177. DOI: 10.1186/1471-2334-10-177

[57]Smittipat N, Billamas P, Palittapongarnpim M, et al. Polymorphism of variable-number tandem repeats at multiple loci inMycobacteriumtuberculosis[J].J Clin Microbiol, 2005, 43(10): 5034-5043.

[58]Pang Y, Xia H, Zhang ZY, et al. Multicenter evaluation of genechip for detection of multidrug-resistantMycobacteriumtuberculosis[J].J Clin Microbiol, 2013, 51(6): 1707-1713. DOI: 10.1128/JCM.03436-12

[59]Zhang ZH, Li LT, Luo F, et al. Rapid and accurate detection of RMP- and INH- resistantMycobacteriumtuberculosisin spinal tuberculosis specimens by CapitalBio DNA microarray: a prospective validation study[J].BMC Infect Dis, 2012, 12: 303. DOI: 10.1186/1471-2334-12-303

DOI:10.3969/j.issn.1002-2694.2016.01.016

通訊作者:張阿梅,Email: zam1980@yeah.net

中圖分類號:R378.91

文獻標識碼:A

文章編號:1002-2694(2016)01-0076-07

Corresponding author:Zhang A-mei, Email: zam1980@yeah.net

收稿日期:2015-05-13;修回日期:2015-11-05

Genetic genotyping techniques for Mycobacterium tuberculosis and the application

LI Dao-qun1,2,XIA Xue-shan1,2,SONG Yu-zhu1,2,ZHANG A-mei1,2

(1.FacultyofLifeScienceandTechnology,KunmingUniversityofScienceandTechnology,Kunming650500,China;2.InstituteofMolecularMedicine,KunmingUniversityofScienceandTechnology,Kunming650500,China)

Abstract:Mycobacterium tuberculosis (MTB) is the pathogenic agent for TB. Recently, the incidence rate of TB and the TB strains with drug resistant increased. All suggested that the epidemiological characters of TB were different from previous one. Choosing suitable therapeutic methods could efficiently protect normal individuals from TB and treat the patients with TB, which is essential for personalized medicine and treatment. The common genotyping methods included restriction fragment length polymorphism of IS6110, spacer oligonucleotide typing, multi-locus variable tandem number repeats analysis, whole-genome sequencing, resistance-associated mutation spectrum analysis, microarray genotyping, etc. Two sides, i.e. advantage and shortcoming, co-existed in each technology when they were used in clinic and research. The genotyping methods and the application were summarized in this review to provide theoretical basis for clinicians and researchers.

Keywords:Mycobacterium tuberculosis; typing technology; genotyping

云南省科技廳重點新產品開發計劃 (No.2012AE003和No.2013BC009),昆明理工大學人才培養項目(No.KKSY201226148)資助

主站蜘蛛池模板: 国产在线98福利播放视频免费| 9999在线视频| 亚洲国产成人久久精品软件| 热re99久久精品国99热| 无码精品福利一区二区三区| 国产成人久久777777| 精品视频一区二区三区在线播| 91九色最新地址| 国产欧美日韩18| 亚洲精品大秀视频| 福利姬国产精品一区在线| 重口调教一区二区视频| 日本亚洲欧美在线| www.91在线播放| 国产综合网站| 精品视频在线一区| 老司机精品一区在线视频| 青青操国产视频| 亚洲日韩精品伊甸| 亚洲第一成年免费网站| 一级一毛片a级毛片| 久久久久无码精品| 国产一在线观看| 久久精品国产精品青草app| 91精品国产综合久久不国产大片| 亚洲一区二区在线无码| 日本中文字幕久久网站| 亚洲欧美激情另类| 欧美一级片在线| 亚洲一区国色天香| 欧美综合中文字幕久久| 日韩精品免费一线在线观看| av在线5g无码天天| 97国产精品视频人人做人人爱| 免费国产黄线在线观看| 国产第一页免费浮力影院| 国产精品夜夜嗨视频免费视频| 亚洲精品在线观看91| 国产精品亚欧美一区二区三区| 一本一本大道香蕉久在线播放| 日韩a级毛片| 色噜噜久久| 香蕉视频在线观看www| 国产美女精品在线| 亚洲最新地址| 国产成人综合亚洲欧洲色就色| 日本不卡在线| 手机精品福利在线观看| 黄色网在线免费观看| 人妻精品久久久无码区色视| 精品福利网| 欧美丝袜高跟鞋一区二区| 欧美啪啪一区| 国产一区成人| 手机成人午夜在线视频| 亚洲区第一页| 免费在线看黄网址| 色综合天天娱乐综合网| 无码精品国产dvd在线观看9久| 好吊色妇女免费视频免费| 国内精品伊人久久久久7777人| 性色生活片在线观看| 欧美日韩在线成人| 国产91熟女高潮一区二区| 亚洲欧洲日韩久久狠狠爱| 欧美亚洲国产视频| 青草视频网站在线观看| 99精品热视频这里只有精品7| 亚洲色大成网站www国产| 99人体免费视频| 国产在线视频导航| 在线观看91精品国产剧情免费| 2021天堂在线亚洲精品专区| 欧美人人干| 国内精品自在欧美一区| 成人免费视频一区| 日韩国产黄色网站| 国产精品区网红主播在线观看| 亚洲中文在线看视频一区| 日日碰狠狠添天天爽| 久久国产乱子| 91在线无码精品秘九色APP|