葛煒

[摘 要]隨著新課程改革的深入推行,質疑已經成為一種有效的教學方式而被廣大教師運用.質疑總是與問題緊密聯系,但并非所有的問題都可以引起學生質疑.教師應將知識比較點、學習關鍵點和課堂錯誤點作為重要的質疑點,逐步培養學生的質疑習慣和能力.
[關鍵詞]高中數學 問題 質疑
[中圖分類號] G633.6[文獻標識碼] A[文章編號] 16746058(2016)140031
問題是數學教學的核心,數學教學總是提出一個又一個的問題,不斷解決新的問題.
質疑并不等同于簡單的提問,不僅需要教師提出的問題有探討價值,還需要對學生的學習具有激勵和引導作用.縱觀現今高中數學教學現狀,筆者認為,教師在對于問題的有效設置和引導學生進行有效質疑方面都存在著很大的提升空間,只有找準質疑點,巧妙設置疑問,幫助學生從無疑到有疑,再逐漸釋疑、答疑,讓質疑貫穿課堂,教學效率就會獲得提升.因此,質疑點的選擇便成了教學的關鍵,現筆者就有效質疑點的選取展開探討.
一、比較點生疑
學習是一個連續性過程,尤其對于數學而言,整個數學學習都是貫通的,不僅高中數學間的知識點環環相扣,高中數學與初中數學之間也存在著千絲萬縷的聯系.數學學習要具有整體意識,只有將整個知識體系融會貫通,學習才能得心應手,新舊知識之間的聯系也恰恰給質疑點的設置提供了良好契機.
概念是數學學習的基礎,只有正確理解概念,才能高效學習.而數學概念錯綜復雜,在教學過程中,筆者要抓住新舊概念間的聯系,誘發學生比較、聯想.
例如,映射的概念與學生所熟知的函數的概念看似毫不相干,但本質上卻是一般性與特殊性的對應關系.于是在學習映射的時候,為了引發學生質疑,筆者引出了這樣一個話題:“映射是兩個元素集之間的元素相互對應關系,而函數則是一個量隨著另外一個量的變化而變化,老師覺得這兩個概念很像,你們怎么看?”盡管學生已經對映射有所了解,也對函數的概念了然于胸,卻沒有將這兩個概念建立聯系,而這個話題的提出讓學生頓生疑問.要從這兩個看似不相干的概念中找出區別與聯系,學生就要理清思路,從概念本質出發進行解析.如此一來學生對這兩個概念就有了更加全面且深入的理解,為學習奠定了堅實基礎.
二、關鍵點生疑
相對于初中數學而言,高中數學的知識點劇增,而且數學語言有了較大的變化,不再像初中數學那般通俗、形象,而是更多地使用符號、邏輯運算、函數、圖形等抽象化語言.為了幫助學生減輕學習困難,理清學習思路,教師必須深入分析教材特點,找準教學的重點和難點,并結合學生的特點和實際學情,抽離出教學的重點和難點,幫助學生克服教學壁壘.
最好的呈現教學重難點的方法無疑就是設置質疑
點,用問題質疑的方式強化教學關鍵點,鼓勵學生開啟思維,積極參與討論,提出自己的看法,層層深入解析,抓住知識要點.
例如,在對數的學習中,對數式與指數式的相互轉化是教學的重點,筆者以這樣的兩個問題誘發學生質疑:1.為何對數的定義中要求底數大于0,且不等于0?2.所有的實數都有對數嗎?這兩個問題都是從學生容易忽略的平常點著眼,看似是無疑處生疑,實際上卻揭示了教學的關鍵,幫助學生建立不同的數學形式等價轉換這個重要的思想.
三、錯誤點生疑
課堂上不僅需要教師引導質疑,更要學生主動質疑.在教師多次引導質疑后,學生的問題意識會得到一定提升,在課堂學習中也會更加注重自己的理解,逐步實現對學習的管理和掌控,真正成為學習的主人.學生思考得越多,發現的問題也就越多,當他們開始認真審視自己的學習效果,便會自主生發出疑問來,大膽對自己的學習結果、學習過程提出質疑.
在學習過程中,學生犯錯在所難免,有些學生因為錯誤深受打擊,但有些學生卻能夠在錯誤中成長.一名優秀的教師就應該引導學生正視自己的錯誤,鼓勵他們因錯質疑.正確對待錯誤的方式不只是簡單對照正確答案,而是從頭思考錯誤的由來.無論是忽視了題目條件和范圍的變化,還是審題出現了偏差,抑或是計算不準確,通過質疑,都能夠找到錯誤的癥結所在.如此質疑為學生提供了一個良好的反思機會,幫助他們修正錯誤,找準學習中的薄弱點,對癥下藥.
例如,在學習解三角形的時候,筆者曾經在課堂上出過這么一道題:在△ABCD中,sinA=35,cosB=5n,求cosC.拿到這道題,很多學生都不假思索地將其分為銳角三角形和鈍角三角形兩種情況.找錯誤的過程讓學生認識到自己犯了經驗主義錯誤,想當然地認為應該分情況考慮,卻忽略了三角形的內角和為180°這一基本常識.這種質疑反思告訴學生任何情況下都不能僅僅憑所謂經驗做題,而是要慎重思考.
綜上所述,問題質疑的教學方式不僅需要教師設置多個質疑點,引起學生的學習興趣,還要引導學生主動質疑,將學習方式從被動的接受轉變為主動的質疑、探索,高效提升學習效率,并逐步樹立問題意識,培養創新思維.
(責任編輯 羅 艷)