莊彪,閔志均,王延峰,張鵬,倪熊,瞿惠龍,丁育明(上海市浦東醫院,上海201399)
?
miR-34a在結腸癌細胞增殖和遷移中的作用及其分子機制
莊彪,閔志均,王延峰,張鵬,倪熊,瞿惠龍,丁育明(上海市浦東醫院,上海201399)
摘要:目的探討miR-34a在結腸癌細胞增殖和遷移中的作用,并驗證其靶點蛋白。方法傳代培養人結腸癌細胞株HCT-116,分別采用空病毒載體(pRI-CMV-GFP)轉染(陰性對照組)、慢病毒載體(pRI-CMV-GFP-miRNA-34a)轉染(慢病毒組),另選未經任何處理的HCT-116細胞作為空白對照組。采用Real-time PCR法檢測miR-34a的相對表達量,采用MTT實驗、Transwell小室法檢測HCT-116細胞增殖和遷移能力,采用細胞免疫熒光試驗和Western blotting法驗證其靶點蛋白。結果以空白對照組miR-34a表達為1,陰性對照組為1.03±0.09,慢病毒組為6.41±1.56,慢病毒組高于陰性對照組及空白對照組(P均<0.01),證實慢病毒轉染成功。與空白對照組、陰性對照組比較,慢病毒組細胞增殖和遷移能力顯著下降(P均<0.01)。細胞免疫熒光試驗顯示,慢病毒組細胞c-Met的熒光強度顯著降低,而空白對照組與陰性對照組無明顯變化。Western blotting結果顯示,慢病毒組c-Met及磷酸化c-Met表達均低于陰性對照組、空白對照組(P均<0.01)。結論過表達miR-34a可抑制結腸癌細胞增殖及遷移,并下調靶點蛋白c-Met及磷酸化c-Met表達,提示miR-34a可作為結腸癌治療的分子靶點。
關鍵詞:結腸癌;miR-34a;細胞增殖;細胞遷移;c-Met
微小RNA(miRNA)是一種廣泛存在于真核生物細胞內、長約22個核苷酸、能與特定靶基因信使RNA的3′UTR配對結合來調控靶基因表達的非編碼RNA[1]。研究發現,miRNAs(如miR-21、miR-143、miR-145等)能通過調控不同蛋白的表達,影響結腸癌細胞的生物學行為[2]。miR-34a在肺癌、胃癌和肝癌等細胞中異常表達能夠誘導多種癌細胞凋亡并抑制其遷移[3, 4];但其在結腸癌細胞中的作用及其機制鮮見報道。2014年5月,我們采用慢病毒miR-34a過表達載體轉染結腸癌細胞,觀察其對結腸癌細胞增殖和遷移的影響,并驗證其靶點蛋白,旨在為結腸癌的臨床治療提供理論依據。
1材料與方法
1.1材料人結腸癌細胞株HCT-116,購自中國科學院上海細胞庫;miRNA提取試劑盒,購自德國QIAGEN公司;逆轉錄、熒光定量PCR試劑盒,購自日本TaKaRa公司;miR-34a過表達的慢病毒載體(pRI-CMV-GFP-miRNA-34a,以下稱慢病毒載體)和轉染增強劑(polybrene),購自上海吉瑪制藥技術有限公司;一抗(兔抗人anti-c-Met,anti-c-Met phosphorylation,GAPDH)和辣根過氧化物酶標記的二抗(羊抗兔),購自美國Cell Signaling Technology公司;其他生化試劑購自Sigma公司。
1.2實驗方法
1.2.1細胞培養及轉染HCT-116細胞置于含10% FBS和100 U/mL青鏈霉素的DMEM培養基,37 ℃、5% CO2恒溫細胞培養箱內培養,每2~3天更換培養液。待細胞融合>80%,胰蛋白酶消化并傳代。取對數生長期細胞接種于6孔板,隨機分為空白對照組、陰性對照組、慢病毒組,37 ℃、5% CO2恒溫細胞培養箱培養。待細胞融合>30%時更換無血清培養基,陰性對照組轉染空病毒載體(pRI-CMV-GFP)、慢病毒組轉染慢病毒載體,空白對照組不予任何處理。按照1 μg載體∶500 μL DMEM混合均勻,加入polybrene(5 μg/mL)增強病毒轉染效率,室溫孵育30 min;將混合物加入6孔板中,混勻后繼續培養,轉染12 h更換DMEM完全培養液。采用濃度遞增的嘌呤霉素對轉染后的細胞進行穩定表達篩選,細胞出現GFP綠色熒光表明轉染成功。取各組細胞1×106個,采用miRNA提取試劑盒提取總miRNA,TaqMan microRNA逆轉錄試劑盒將miRNA逆轉錄成cDNA。以cDNA為模板進行Real-time PCR反應。以U6為內參校正PCR模板的拷貝數。以2-ΔΔCt法[5]計算各組miR-34a的相對表達量。每組設3個復孔,取平均值。
1.2.2HCT-116細胞增殖能力檢測采用MTT法。細胞分組及轉染同上,待轉染成功后,采用胰蛋白酶消化制成單細胞懸液,按2×103個/孔接種于96孔板中。分別于0、24、48、72 h,加入10 μL MTT試劑,37 ℃孵育1 h,酶標儀480 nm處讀取每孔的吸光度(OD)值。細胞增殖能力=(當日OD值-前日OD值)/前日OD值。
1.2.3HCT-116細胞遷移能力檢測采用Transwell小室法。細胞分組及轉染同上,待轉染成功后,于Transwell小室下室加入1 mL完全培養基,遷移小室內加入200 μL細胞懸液(細胞密度1×106/mL),37 ℃孵育24 h;棉簽擦拭遷移小室內未遷移至基底層細胞,向遷移小室內加入200 μL染色液染色30 min,去除染色液,向每孔加入乙酸溶解染料,轉移至24孔板,置于酶標儀570 nm處讀數。
1.2.4miR-34a靶點蛋白驗證①采用細胞免疫熒光試驗。細胞分組及轉染同上,待轉染成功后,于細胞培養板中將已爬好細胞的玻片用PBS浸洗,4%多聚甲醛常溫下固定15 min,0.5% Triton X-100室溫通透,PBS浸洗;玻片上滴加正常山羊血清,室溫封閉30 min;每張玻片滴加一抗(anti-c-Met)并放入濕盒,4 ℃孵育過夜;次日去除一抗,PBS清洗后加入熒光二抗,濕盒37 ℃孵育1 h;使用含抗熒光淬滅劑的封片液封片,熒光顯微鏡下觀察。②采用Western blotting法。細胞分組及轉染同上,48 h后取1×106個細胞,加入10 μL RIPA裂解液,10 min后提取總蛋白,并測定蛋白濃度,各組取50 μg蛋白進行10% SDS-PAGE電泳。電泳結束后轉膜至PVDF膜,用5% milk-TBS將膜封閉1 h,加入相應的第一抗體,靜置,4 ℃過夜。次日使用TBST漂洗,辣根過氧化物酶(HRP)標記的二抗室溫孵育1 h,顯色拍照。

2結果
2.1各組miR-34a相對表達量比較轉染48 h,慢病毒組和陰性對照組可見GFP綠色熒光,而空白對照組未見GFP綠色熒光,表明慢病毒轉染成功。見插頁Ⅰ圖1。以空白對照組miR-34a表達為1,陰性對照組為1.03±0.09,慢病毒組為6.41±1.56。慢病毒組miR-34a表達高于陰性對照組、空白對照組(P均<0.01),而陰性對照組、空白對照組比較均無統計學差異(P>0.05)。
2.2各組細胞增殖能力及遷移能力比較見表1。
2.3miR-34a靶點蛋白驗證結果細胞免疫熒光試驗顯示,慢病毒組c-Met的熒光強度顯著降低,而空白對照組與陰性對照組無明顯變化。見插頁Ⅰ圖2。Western blotting結果顯示,以空白對照組c-Met及磷酸化c-Met表達為1,陰性對照組分別為1.10±0.22、1.14±0.31,慢病毒組分別為0.41±0.30、0.19±0.42。慢病毒組c-Met及磷酸化c-Met表達均低于陰性對照組、空白對照組(P均<0.01),而陰性對照組、空白對照組比較均無統計學差異(P均<0.01)。

表1 各組細胞增殖能力及遷移能力比較±s)
注:與空白對照組、陰性對照組比較,*P<0.01。
3討論
miRNAs是人體細胞內種類最多的表達調控因子,具有多種生物學功能[6~8]。目前,miRNAs在癌細胞惡性生物學行為的調控已成為腫瘤研究熱點。有研究表明,腫瘤患者體內miRNAs表達譜已經出現顯著差異,通過對其中差異化表達明顯的miRNAs進行初步篩選,證實部分miRNAs表達與腫瘤預后相關[9~13]。miR-34a作為一種最新鑒定的、與多種癌癥病理機制密切相關的miRNA,在前列腺癌、乳腺癌及胃癌中高表達,并與腫瘤的侵襲及轉移密切相關。
為闡明miR-34a在結腸癌發生中的作用,本研究構建了miR-34a過表達的慢病毒載體,并穩定轉染HCT-116細胞,通過嘌呤霉素和Real-time PCR法證實轉染成功,并通過細胞功能試驗證實過表達miR-34a可顯著抑制HCT-116細胞增殖和遷移。
c-Met作為原癌基因,在多種癌細胞增殖、遷移和分化等過程中具有重要調節作用。c-Met在惡性腫瘤中過表達,可能與腫瘤的進展密切相關。Landskron等[14]研究發現,潰瘍性結腸炎癌變黏膜c-Met表達明顯增高。本研究結果顯示,miR-34a可下調HCT-116細胞中靶點蛋白c-Met及磷酸化c-Met的表達。證實結腸癌細胞c-Met表達受miR-34a的調控,過表達miR-34a能夠顯著下調c-Met的表達,繼而抑制結腸癌細胞的增殖和遷移。但在癌細胞的增殖、分化和遷移中,往往存在多種基因網絡或信號通路的共同參與,如TREM2、SIRT1等,也受miR-34a的抑制或增強[15]。因此,要進一步明確miR-34a的作用及其機制,仍需對結腸癌相關基因的調控網絡進行深入研究。
綜上所述,過表達miR-34a可抑制結腸癌細胞增殖及遷移,并下調靶點蛋白c-Met及磷酸化c-Met表達,提示miR-34a可作為結腸癌治療的分子靶點。
參考文獻:
[1] Pereira DM, Rodrigues PM, Borralho PM, et al. Delivering the promise of miRNA cancer therapeutics[J]. Drug Discov Today, 2013,18(5-6):282-289.
[2] Schepeler T, Reinert JT, Ostenfeld MS, et al. Diagnostic and prognostic microRNAs in stage Ⅱ colon cancer[J]. Cancer Res, 2008,68(15):6416-6424.
[3] Hong JH, Roh KS, Suh SS, et al. The Expression of microRNA-34a is inversely correlated with c-Met and CDK6 and has a prognostic significance in lung adenocarcinoma patients[J]. Tumour Biol, 2015,36(12):9327-9337.
[4] Xu X, Chen W, Miao R, et al. miR-34a induces cellular senescence via modulation of telomerase activity in human hepatocellular carcinoma by targeting foxM1/c-Myc pathway[J]. Oncotarget, 2015,6(6):3988-4004.
[5] Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative C(T) method[J]. Nat Protoc, 2008,3(6):1101-1108.
[6] Shenouda SK, Alahari SK. microRNA function in cancer: oncogene or a tumor suppressor[J]. Cancer Metastasis Rev, 2009,28(3-4):369-378.
[7] Calin GA, Croce CM. microRNA signatures in human cancers[J]. Nat Rev Cancer, 2006,6(11):857-866.
[8] Mo YY. microRNA regulatory networks and human disease[J]. Cell Mol Life Sci, 2012,69(21):3529-3531.
[9] Schetter AJ, Leung SY, Sohn JJ, et al. microRNA expression profiles associated with prognosis and therapeutic outcome in colon adenocarcinoma[J]. JAMA, 2008,299(4):425-436.
[10] Duan K, Ge YC, Zhang XP, et al. miR-34a inhibits cell proliferation in prostate cancer by downregulation of SIRT1 expression[J]. Oncol Lett, 2015,10(5):3223-3227.
[11] Li G, Yao L, Zhang J, et al. Tumor-suppressive microrna-34a inhibits breast cancer cell migration and invasion via targeting oncogenic TPD52[J]. Tumour Biol, 2015.[Epud ahead of print]
[12] Cho CY, Huang JS, Shiah SG, et al. Negative feedback regulation of AXL by miR-34a modulates apoptosis in lung cancer cells[J]. RNA, 2015. [Epud ahead of print]
[13] Yan D, Zhou X, Chen X, et al. microRNA-34a inhibits uveal melanoma cell proliferation and migration through downregulation of c-Met[J]. Invest Ophthalmol Vis Sci, 2009,50(4):1559-1565.
[14] Landskron G, De la Fuente M, Thuwajit P, et al. Chronic inflammation and cytokines in the tumor microenvironment[J]. J Immunol Res, 2014,2014:149185.
[15] Yamakuchi M, Ferlito M, Lowenstein CJ. miR-34a repression of SIRT1 regulates apoptosis[J]. Proc Natl Acad Sci U S A, 2008,105(36):13421-13426.
Function and molecular mechanism of miR-34a in proliferation and migration of colon cancer
ZHUANGBiao,MINZhijun,WANGYanfeng,ZHANGPeng,NIXiong,QUHuilong,DINGYuming
(ShanghaiPudongHospital,Shanghai201399,China)
Abstract:ObjectiveTo explore the role of miR-34a in the proliferation and migration of colon cancer cells, and to validate the target protein. MethodsThe empty vector (pRI-CMV-GFP) and lentiviral vector (pRI-CMV-GFP-miRNA-34a vector) were transfected into human colon cancer cell line (HCT-116) as the negative control group and lentiviral group, while HCT116 cells without any processing were regarded as the blank control group. The expression of miR-34a was detected by real-time PCR. MTT and Transwell assays were used to detect HCT-116 cell proliferation and migration. Immunofluorescence and Western blotting were applied to verify the target gene of miR-34a in HCT-116. ResultsThe expression of miR-34a in the blank control group was taken as 1, the expression of miR-34a in the negative control group and lentiviral group was 1.03±0.09 and 6.41±1.56, respectively. The lentiviral group was higher than the negative control group and blank control group (all P<0.01), which confirmed lentiviral transfection was successful. Compared with the blank control group and negative control group, the proliferation and migration abilities of HCT-116 cells in the lentiviral group were significantly decreased (all P<0.01). Moreover, the fluorescence intensity of c-Met in the lentiviral group was significantly decreased while no change was found in the other two groups. Western blotting showed that the expression of c-Met and phosphorylated c-Met in the lentiviral group was lower than that of the negative control and blank control group (all P<0.01). ConclusionOver-expression of miR-34a inhibits the proliferation and migration of colon cancer cells and down-regulates the target protein c-Met and phosphorylated c-Met expression, which suggests miR-34a could be a effective molecular target in treatment of colon cancer.
Key words:colon cancer; miR-34a; cell proliferation; cell migration; c-Met
(收稿日期:2015-11-21)
中圖分類號:R735.3
文獻標志碼:A
文章編號:1002-266X(2016)08-0014-03
doi:10.3969/j.issn.1002-266X.2016.08.005
作者簡介:第一莊彪(1969-),男,副主任醫師,主要研究方向為胃腸道腫瘤綜合治療。E-mail: zhuangbiao2000@163.com
基金項目:上海市浦東新區衛生和計劃生育委員會衛生科技項目(PW2014A-28)。