李曼妮,劉建平,陶永勝,陳靜波,陳馨馨,譚志琴
(1公安邊防部隊總醫院,廣東深圳 518029;2湖南師范大學附屬湘南醫院)
?
miR-185對肝癌細胞增殖、凋亡的影響及機制
李曼妮1,劉建平1,陶永勝1,陳靜波1,陳馨馨1,譚志琴2
(1公安邊防部隊總醫院,廣東深圳 518029;2湖南師范大學附屬湘南醫院)
目的 探討miR-185對肝癌細胞增殖、凋亡的影響及機制。方法 用Targetscanhuman在線軟件預測miR-185調控的靶基因;采用熒光素酶報告載體系統檢測miR-185對M2型丙酮酸激酶(PKM2)3′UTR熒光酶活性的影響;蛋白質印跡法檢測miR-185對PKM2蛋白表達的影響。將肝癌HepG2細胞分為觀察1組、對照1組、觀察2組、對照2組、觀察3組。觀察1組轉染miR-185mimics,對照1組轉染Scramble;觀察2組轉染PKM2-siRNA,對照2組轉染Control-siRNA;觀察3組轉染miR-185inhibitors與PKM2-siRNA。采用MTT法檢測上述5組細胞增殖能力,采用AnnexinV-FITC和PI染色法檢測上述5組細胞凋亡率。結果 在線預測軟件發現miR-185與PKM2的3′UTR有共同的結合位點,熒光素酶報告載體系統顯示在HepG2細胞中miR-185能抑制Wild-PKM2報告質粒組熒光素酶的活性,Westernblotting結果顯示miR-185能下調HepG2細胞中PKM2蛋白表達,證實PKM2是miR-185直接調控的靶基因;MTT結果顯示,觀察1組與觀察2組HepG2細胞OD值分別為0.446±0.034、0.472±0.028,與對照1組(0.649±0.041)和對照2組(0.610±0.023)相比,差異均有統計學意義(P均<0.05)。觀察3組的OD值為0.606±0.016,與對照1組或對照2組相比,差異均無統計學意義;凋亡實驗結果顯示,觀察1組與觀察2組HepG2細胞凋亡率分別為(29.13±2.04)%、(27.46±1.95)%,對照1組、對照2組分別為(8.76±0.53)%、(8.51±0.47)%,觀察1組、觀察2組與對照1組、對照2組比較,P均<0.05。觀察3組的凋亡率為(9.47±0.61)%,與對照1組或對照2組相比,差異均無統計學意義。結論miR-185可抑制人肝癌細胞增殖并誘導細胞凋亡;機制可能是通過下調PKM2表達實現。
肝癌;微小RNA-185;M2型丙酮酸激酶;細胞增殖;細胞凋亡
miRNAs是一類非編碼的小RNA分子,其與靶mRNA以堿基互補配對原則結合,使翻譯抑制或mRNA降解,從而在轉錄后水平調控基因表達。最近大量研究顯示,miRNAs在原發性肝細胞癌(HCC)生長調控中發揮重要作用[1~4]。Budhu等[5]研究證實有20個miRNAs表達特征與肝癌的轉移相關,且能預測肝癌患者的生存和復發,其中一個就是miR-185。miR-185位于22q11.21染色體,研究證實miR-185在多種腫瘤中低表達,且類似抑癌基因樣作用[6~8]。Zhi等[9]研究顯示,miR-185能抑制肝癌細胞增殖與侵襲,且miR-185在肝癌中低表達與患者的高復發和低生存率相關。M2型丙酮酸激酶(PKM2)是糖酵解過程中的關鍵限速酶,其功能是催化其底物磷酸烯醇式丙酮酸(PEP)產生丙酮酸。研究[10~13]顯示,PKM2在肺癌、前列腺癌、膠質瘤、肝癌等腫瘤中能促進有氧糖酵解與腫瘤的發生。Xu等[14]研究發現,miR-122通過靶向調控PKM2抑制肝癌細胞增殖并誘導細胞凋亡。而miR-185與PKM2在肝癌中的生物作用和相關機制目前尚未完全闡明。本研究通過在線軟件預測、熒光素酶報告載體及Western blotting等技術探討miR-185與PKM2的關系,并進一步分析miR-185在肝癌中的生物學作用及相關分子機制。
1.1 材料 人肝癌HepG2細胞由南華大學腫瘤研究所惠贈,細胞用含10%胎牛血清的RPMI1640培養,置于37 ℃、5%CO2的恒溫箱中培養。Lipofectamine2000轉染試劑購自美國Invitrogen公司,miR-185 mimics、inhibitors及Scramble購自美國Ambion公司,PKM2 siRNA質粒購自Santacruz公司,PKM2 3′UTR的各種報告基因(Wild- PKM2-3′UTR vector,Mut- PKM2-3′UTR vector)、雙報告基因載體由廣州復能基因公司構建,雙熒光素酶活性檢測試劑盒購自Promega公司,PKM2抗體和β-actin抗體購自美國Epigentek公司,PRIM1640培養基和小牛血清購自Gibco公司,MTT粉購自美國Sigma公司。
1.2 miRNA和質粒瞬時轉染 消化細胞并吹打制成5×104個細胞/mL的懸液,按2 mL/孔鋪至6孔板內,置于37 ℃、5%CO2的細胞培養箱中培養至細胞匯合度達30%~50%時用于轉染。在無菌EP管中配好Lipofectamin2000及待轉染試劑;室溫放置20 min,使脂質體與DNA形成復合體。用無血清培養液輕輕洗滌待轉染細胞,加入無血清RPMI1640 1 mL,然后將孵育好的載體和脂質體的混合溶液加至6孔板中,將細胞置于37 ℃、5%CO2培養箱中培養,轉染6 h后換成RPMI1640完全細胞培養基繼續培養48 h。
1.3 靶基因在線預測及熒光素酶活性檢測 打開Target scan human軟件(http://www.targetscan.org/),在物種中選擇人類,在相應miRNA文本框中選擇miR-185,然后提交,系統自行運行后出現該miRNA可能調控的基因。培養肝癌HepG2細胞,將HepG2細胞分為實驗1、2、3、4組,實驗1組轉染miR-185與Wild-PKM2,實驗2組轉染Scramble與Wild-PKM2,實驗3組轉染miR-185與Mut-PKM2,實驗4組轉染Scramble與Mut-PKM2,48 h后收獲細胞。按照Promega公司雙熒光素酶活性檢測試劑盒說明書操作,用單光子檢測儀檢測細胞熒光素酶活性。計算相對熒光素酶活性=螢火蟲熒光素酶活性值/海腎熒光素酶活性值。每組實驗重復3次。
1.4 PKM2蛋白表達檢測 采用Western blotting法。將肝癌HepG2細胞接種到24孔板中,分別轉染miR-185 mimics與Scramble序列,48 h后收集細胞,并提取細胞總蛋白。BCA法測定蛋白濃度。各組取等量樣本,進行SDS-PAGE凝膠電泳后將蛋白轉移至PVDF膜上,5%脫脂牛奶封閉,加入PKM2抗體或β-actin抗體,4 ℃過夜。TBST洗膜30 min,加入二抗室溫孵育1 h,TBST洗膜30 min,然后加ECL發光劑,X線片曝光、顯影、定影。
1.5 細胞增殖能力檢測 采用MTT法。將肝癌HepG2細胞分為觀察1組、對照1組、觀察2組、對照2組、觀察3組。觀察1組轉染miR-185 mimics,對照1組轉染Scramble;觀察2組轉染PKM2-siRNA,對照2組轉染Control-siRNA;觀察3組轉染miR-185 inhibitors與PKM2-siRNA,培養48 h,收獲細胞。消化各組細胞,取200 μL即5 × 103個細胞接種于96孔板中,設復孔6個,培養至近飽和,每孔加20 μL MTT液,孵育4 h,每孔中加入DMSO 150 μL,低速振蕩10 min,選擇波長為570 nm,于酶標儀上測定各孔OD值,實驗重復3次。OD值代表細胞增殖能力。
1.6 細胞凋亡檢測 采用AnnexinV-FITC/PI染色法。細胞分組同MTT法,收集各組培養至80%左右匯合度的細胞,用PBS液洗滌細胞2次,離心,取約1×106個細胞,加入100 μL的結合緩沖液懸浮細胞。加Annexin V-FITC 5 μL混勻,再加PI 1 μL混勻。室溫下避光反應15~30 min,上機,流式細胞儀檢測。
1.7 統計學方法 采用SPSS13.0統計軟件。計量資料以表示,兩組間比較采用t檢驗,多組間比較采用單因素方差分析。P<0.05為差異有統計學意義。
2.1 熒光素酶活性及PKM2蛋白表達比較 在線預測軟件(Targetscanhuman)預測發現miR-185與PKM2有共同的結合位點。熒光素酶活性檢測結果顯示,實驗1、2、3、4組HepG2細胞熒光素酶活性強度分別為0.582±0.051、0.973±0.053、0.880±0.032、0.970±0.020,實驗1組與實驗2組比較,P<0.01;實驗3組與實驗4組比較差異無統計學意義。表明miR-185mimics對突變型MutPKM2質粒組熒光素酶活性強度無明顯影響,但能明顯抑制野生型Wild-PKM2報告質粒組熒光素酶活性。Westernblotting結果顯示,在肝癌HepG2細胞中轉染miR-185 48h后PKM2蛋白相對表達量為0.437±0.015,較轉染Scramble者(1.204±0.183)明顯下調(P<0.01)。結果均支持PKM2是miR-185直接調控的靶基因。
2.2 各組肝癌細胞增殖能力比較MTT結果顯示,觀察1組與觀察2組HepG2細胞的OD值分別為0.446±0.034、0.472±0.028,與對照1組(0.649±0.041)和對照2組(0.610±0.023)相比,差異均有統計學意義(P均<0.05)。觀察3組的OD值為0.606±0.016,與對照1組或對照2組比較差異均無統計學意義。在肝癌細胞中外源高表達miR-185或沉默PKM2的表達,均能明顯抑制HepG2細胞增殖,而miR-185inhibitors可拮抗si-PKM2對HepG2細胞的增殖抑制作用。
2.3 各組肝癌細胞凋亡情況比較 凋亡實驗結果顯示,觀察1組與觀察2組HepG2細胞凋亡率分別為(29.13±2.04)%、(27.46±1.95)%,對照1組、對照2組分別為(8.76±0.53)%、(8.51±0.47)%,觀察1組、觀察2組與對照1組、對照2組比較,P均<0.05;觀察3組的細胞凋亡率為(9.47±0.61)%,與對照1組或對照2組相比,差異均無統計學意義。在肝癌細胞中外源高表達miR-185或沉默PKM2表達,均能明顯誘導HepG2細胞發生凋亡,而miR-185inhibitors可拮抗si-PKM2對HepG2細胞的凋亡誘導作用。
HCC是一種常見的惡性腫瘤。2008年調查顯示,全球的新發病例超過700 000例[15]。肝癌患者臨床治療效果較差,通常5年以上生存僅5%~9%。手術切除、肝移植及射頻消融術是早期HCC患者的主要治療手段,但遺憾的是大部分患者在確診時已達晚期階段。此外,HCC對多種化療方案高度耐藥,諸多患者死于癌癥復發。因此,新的治療策略開發迫在眉睫。近年來,大量研究表明miRNA在肝癌發生發展中起重要調控作用,進一步研究其相關調控機制可能為肝癌的治療干預提供新的靶點。
在腫瘤發生中,miRNA通過調控其特定靶基因發揮癌基因或抑癌基因樣作用。在腫瘤中高表達的miRNAs通過下調腫瘤抑制基因參與腫瘤的形成。然而,在腫瘤中表達缺失的miRNAs往往使癌基因表達上調。miRNA在腫瘤的發生發展過程中起重要作用,其主要原因:①miRNA在腫瘤中的表達水平明顯異于正常組織和血液;②miRNA在體內外表達調控能修飾腫瘤的表型[16,17]。miRNA在不同腫瘤中的功能關鍵與其調控的靶點相關。大量研究表明,miR-185在多種腫瘤組織或細胞中表達下調,包括肝癌,并在腫瘤細胞的增殖、轉移及凋亡過程中發揮重要作用。miR-185在前列腺癌通過靶向雄激素受體抑制腫瘤細胞的增殖、遷移與侵襲[6]。miR-185在膠質瘤中通過直接靶向DNMT1、RhoA及CDC42抑制腫瘤細胞的增殖與侵襲[7]。miR-185在乳腺癌中靶向調控c-Met,抑制乳腺癌細胞的增殖[8]。miR-185在肝癌細胞中低表達與患者復發、生存時間相關,即低表達者復發率高且生存時間短,而高表達者則相反[9]。Qadir等[18]研究發現,miR-185在肝癌細胞中通過靶向DNMT1/PTEN/Akt通路抑制腫瘤細胞生長。本研究結果發現,在肝癌細胞中高表達miR-185不僅能抑制腫瘤細胞增殖,還能誘導腫瘤細胞凋亡。
最初研究發現PKM2在胚胎組織中表達,而近年研究發現PKM2在腫瘤組織中亦高表達[19]。研究顯示,PKM2在多種腫瘤中高表達,包括肝癌,且PKM2在肝癌中高表達與患者不良預后相關[20]。Kefas等[21]在膠質瘤細胞和膠質瘤干細胞中用siRNA特異性敲低PKM2,發現細胞的增殖、侵襲及存活率明顯降低。此外,沉默PKM2后還能抑制膠質瘤細胞的新陳代謝,谷胱甘肽和ATP水平明顯降低。PKM2在前列腺癌中高表達,在前列腺細胞中沉默PKM2能明顯抑制細胞的增殖能力[22]。PKM2在乳腺癌中高表達,其高表達與乳腺癌患者的預后相關,且能促進乳腺癌干細胞的自我更新與成球能力,其機制可能與Wnt/β-catenin通路相關[23]。PKM2在胃癌中高表達,而外源高表達miR-let-7a能下調PKM2表達水平,并通過靶向調控PKM2從而抑制胃癌細胞的增殖、遷移與侵襲[24]。本研究通過在線預測軟件與熒光素酶報告載體證實PKM2是miR-185調控的直接靶基因。在肝癌細胞中沉默PKM2能抑制肝癌細胞的增殖并誘導凋亡,而將miR-185抑制劑與siRNA-PKM2共同轉染于肝癌細胞,能逆轉肝癌細胞的增殖抑制與凋亡誘導作用;說明miR-185可能通過靶向調控PKM2抑制肝癌細胞的增殖與誘導凋亡。上述結果以PKM2為靶點揭示了miR-185在肝癌中的抑瘤機制,為今后肝癌的治療干預提供了新的切入點。
[1]SongX,WangZ,JinY,etal.LossofmiR-532-5pinvitropromotescellproliferationandmetastasisbyinfluencingCXCL2expressioninHCC[J].AmJTranslRes, 2015,7(11):2254-2261.
[2]WangL,YueY,WangX,etal.FunctionandclinicalpotentialofmicroRNAsinhepatocellularcarcinoma[J].OncolLett, 2015,10(6):3345-3353.
[3]MengX,LuP,FanQ.miR-367promotesproliferationandinvasionofhepatocellularcarcinomacellsbynegativelyregulatingPTEN[J].BiochemBiophysResCommun, 2016,470(1):187-191.
[4]ZhaoL,WangW.miR-125bsuppressestheproliferationofhepatocellularcarcinomacellsbytargetingSirtuin7[J].IntJClinExpMed, 2015,8(10):18469-18475.
[5]BudhuA,JiaHL,ForguesM,etal.Identificationofmetastasis-relatedmicroRNAsinhepatocellularcarcinoma[J].Hepatology, 2008,47(3):897-907.
[6]QuF,CuiX,HongY,etal.MicroRNA-185suppressesproliferation,invasion,migration,andtumorigenicityofhumanprostatecancercellsthroughtargetingandrogenreceptor[J].MolCellBiochem, 2013,377(1-2):121-130.
[7]ZhangZ,TangH,WangZ,etal.MiR-185targetstheDNAmethyltransferases1andregulatesglobalDNAmethylationinhumanglioma[J].MolCancer, 2011,10:124.
[8]FuP,DuF,YaoM,etal.MicroRNA-185inhibitsproliferationbytargetingc-Metinhumanbreastcancercells[J].ExpTherMed, 2014,8(6):1879-1883.
[9]ZhiQ,ZhuJ,GuoX,etal.Metastasis-relatedmiR-185isapotentialprognosticbiomarkerforhepatocellularcarcinomainearlystage[J].BiomedPharmacother, 2013,67(5):393-398.
[10]ChristofkHR,VanderHeidenMG,HarrisMH,etal.TheM2spliceisoformofpyruvatekinaseisimportantforcancermetabolismandtumourgrowth[J].Nature, 2008,452(7184):230-233.
[11]SunQ,ChenX,MaJ,etal.Mammaliantargetofrapamycinup-regulationofpyruvatekinaseisoenzymetypeM2iscriticalforaerobicglycolysisandtumorgrowth[J].ProcNatlAcadSciUSA, 2011,108(10):4129-4134.
[12]YangW,XiaY,HawkeD,etal.PKM2phosphorylateshistoneH3andpromotesgenetranscriptionandtumorigenesis[J].Cell, 2012,150(4):685-696.
[13]XuQ,LiuX,ZhengX,etal.PKM2regulatesGli1expressioninhepatocellularcarcinoma[J].OncolLett, 2014,8(5):1973-1979.
[14]XuQ,ZhangM,TuJ,etal.MicroRNA-122affectscellaggressivenessandapoptosisbytargetingPKM2inhumanhepatocellularcarcinoma[J].OncolRep, 2015,34(4):2054-2064.
[15]JemalA,BrayF,CenterMM,etal.Globalcancerstatistics[J].CACancerJClin, 2011,61(2):69-90.
[16]SaplacanRM,MirceaPA,BalacescuL,etal.MicroRNAsasnon-invasivescreeningbiomarkersofcolorectalcancer[J].ClujulMed, 2015,88(4):453-456.
[17]XieC,HanY,LiuY,etal.miRNA-124down-regulatesSOX8expressionandsuppressescellproliferationinnon-smallcelllungcancer[J].IntJClinExpPathol, 2014,7(11):7518-7526.
[18]QadirXV,HanC,LuD,etal.miR-185inhibitshepatocellularcarcinomagrowthbytargetingtheDNMT1/PTEN/Aktpathway[J].AmJPathol, 2014,184(8):2355-2364.
[19]LluoW,SemenzaGL.EmergingrolesofPKM2incellmetabolismandcancerprogression[J].TrendsEndocrinolMetab, 2012,23(11):560-566.
[20]HuW,LuSX,LiM,etal.PyruvatekinaseM2preventsapoptosisviamodulatingBimstabilityandassociateswithpooroutcomeinhepatocellularcarcinoma[J].Oncotarget, 2015,6(9):6570-6583.
[21]KefasB,ComeauL,ErdleN,etal.PyruvatekinaseM2isatargetofthetumor-suppressivemicroRNA-326andregulatesthesurvivalofgliomacells[J].NeuroOncol, 2010,2(11):1102-1112.
[22]WongN,YanJ,OjoD,etal.ChangesinPKM2associatewithprostatecancerprogression[J].CancerInvest, 2014,32(7):330-338.
[23]ZhaoZ,SongZ,LiaoZ,etal.PKM2promotesstemnessofbreastcancercellbythroughWnt/β-cateninpathway[J].TumourBiol, 2015,37(3):4223-4234.
[24]TangR,YangC,MaX,etal.MiR-let-7ainhibitscellproliferation,migration,andinvasionbydown-regulatingPKM2ingastriccancer[J].Oncotarget, 2016,7(5):5972-5984.
Effects of miR-185 on proliferation and apoptosis of hepatocellular carcinoma cells
LIManni1,LIUJianping,TAOYongsheng,CHENJingbo,CHENXinxin,TANZhiqin
(1GeneralHospitalofPublicSecurityFrontierDefense,Shenzhen518029,China)
Objective To investigate the effects of miR-185 on proliferation and apoptosis of hepatocellular carcinoma cells and its mechanism.Methods The online prediction software was employed to predict the target genes of miR-185. The effect of miR-185 on the activity of pyruvate kinase isozyme type M2 (PKM2) 3′UTR was examined by luciferase reporter vector system. The effect of miR-185 on PKM2 protein expression was observed by Western blotting. HepG2 cells were divided into the observation group 1, control group 1, observation group 2, control group 2, and observation group 3. The observation group 1 was transfected by miR-185 mimics, the control group 1 was transfected with scramble, the observation group 2 was transfected by PKM2-siRNA, the control group 2 was transfected by control-siRNA, and the observation group 3 was transfected by miR-185 inhibitors and PKM2-siRNA. MTT assay was used to observe the changes of cell proliferation in the five groups, and Annexin V-FITC and PI staining were used to measure the apoptotic rate of the five groups.Results The online prediction software confirmed that miR-185 and 3'UTR of PKM2 had the common binding sites. Luciferase reporter vector system showed that miR-185 inhibited the luciferase activity of Wild-PKM2 reporter plasmid. Western blotting showed that the protein level of PKM2 was decreased by miR-185, which showed that PKM2 was a target gene directly regulated by miR-185. MTT assay showed that the OD values of HepG2 cells in the observation group 1 and observation 2 were 0.446±0.034 and 0.472±0.028, respectively, which were significantly lower than those in control group 1 (0.649±0.041) and control group 2 (0.610±0.023) (allP<0.05). The OD value of the observation group 3 was 0.606±0.016, which was not significantly different as compared with that of the control group 1 or the control group 2. The apoptotic rates of HepG2 cells in the observation group 1 and observation group were 29.13%±2.04% and 27.46%±1.95%, which were significantly higher than those in control group 1 (8.76%±0.53%) and control group 2 (8.51%±0.47%), and the difference was statistically significant between the observation group 1, 2 and the control group 1, 2 (allP<0.05). The apoptotic rate of the observation group 3 was 9.47%±0.61%, which was not significantly different from that of the control group 1 or 2.Conclusion miR-185 inhibits cell proliferation and induces apoptosis by down-regulating PKM2 expression in hepatocellular carcinoma.
hepatocellular carcinoma; microRNA-185; pyruvate kinase isozyme type M2; cell proliferation; apoptosis
湖南省衛生廳課題(B2014-067)。
李曼妮(1970-),女,副主任醫師,博士,主要研究方向為肝病及感染病學。E-mail:limanni1234@163.com
10.3969/j.issn.1002-266X.2016.41.003
R735.7
A
1002-266X(2016)41-0010-04
2016-02-11)