彭茂瀟,牛東紅,李家樂
(上海海洋大學水產與生命學院,農業部淡水水產種質資源重點實驗室,上海 201306)
·綜述·
海洋無脊椎動物補體系統研究進展
彭茂瀟,牛東紅,李家樂
(上海海洋大學水產與生命學院,農業部淡水水產種質資源重點實驗室,上海 201306)
補體系統是先天免疫的重要組成部分,在免疫反應中發揮重要作用。補體的研究可以為海洋無脊椎動物提供病害防治的理論基礎。本文介紹了海洋無脊椎動物補體系統中已報道的C1q、MBL、ficolin、MASP、B因子、C3和C6等成分,比較了海洋無脊椎動物補體成分的功能,描述了其補體激活途徑和補體系統進化情況。目前,海洋無脊椎動物補體的研究發展很快,揭示可能存在與脊椎動物差異較大的補體系統,但是缺乏系統的基礎研究而未能構建起理論模型。
海洋無脊椎動物;補體系統;補體途徑;系統進化
補體系統是由一系列40多種蛋白質分子所組成、有著精密調控機制的蛋白質反應系統。補體作為眾多免疫效應機制中的一員,在免疫過程的末端和吞噬作用以及炎癥反應等一起發揮著作用。補體的研究始于19世紀中葉BUCHNER等[1]對體外血清熱敏性物質殺滅細菌的研究,然而“補體”一詞由PUAL于1899年提出的時候就被認為是一批并不嚴格相互依賴的因子[2]。補體一直被認為是免疫應答機制中的配角。21世紀,補體分子與重大疾病關系的功能研究頻頻被報道,學者們開始重視補體這一被低估的分子類群。
無脊椎動物缺乏真正的抗體和特異性的免疫細胞,機體防御反應依靠非特異性的先天免疫[3]。補體在體液免疫中發揮著重要作用,是連接先天免疫和適應性免疫的樞紐[4]。在昆蟲和線蟲等陸生原口類無脊椎動物中大部分的補體成分沒有被發現,無脊椎動物補體的研究絕大多數以海洋無脊椎動物為對象[5],主要集中在脊索動物、節肢動物、棘皮動物、刺胞動物和軟體動物。近年來,補體作為先天免疫的重要組成部分,以及與抗體多個水平上發生相互作用的特殊角色,其在海洋無脊椎動物病害防治和免疫機制的研究中不斷被重視。海洋無脊椎動物補體的研究起步較晚,多處于相關成分基因的克隆、蛋白質結構的分析、單一成分功能的描述、途徑的初步探索和進化演變分析。
基于參與途徑的不同,補體成分在哺乳動物中可以分成4類:1)固有成分:主要包括C1復合體(C1q、C1r和C1s)、C2~C9、B因子、D因子、P因子、甘露糖結合型凝集素(MBL)、ficolin和甘露糖結合型凝集素關聯絲氨酸蛋白酶(MASP);2)調控分子:主要包括C1抑制物、I因子、H因子、C4結合蛋白和膜輔助蛋白等;3)補體受體:主要包括CR1~CR5、C1q受體、C2a/C4a受體、H因子受體和不同片段的C3和C5受體等;4)活性片段:主要包括C3a、C4a和C5a等以及這些活性片段的進一步分解產物[2,6]。
海洋無脊椎動物補體成分比脊椎動物要少,就某一單一成分來說存在不同程度的亞型,往往亞型數量眾多[7],甚至在不同的個體發育時期也存在不同亞型的差異表達[8]。海洋無脊椎動物補體成分的研究主要以補體固有成分為主,其它成分僅個別被報道。從固有成分所形成的分子家族角度來看,在海洋無脊椎動物中,C1q家族(C1q、MBL和ficolin)分子均有所發現,MASP家族(MASP、C1r、C1s)中僅MASP分子被發現,B因子家族(B因子和C2)中僅B因子被發現,C3家族(C3、C4和C5)中僅C3被發現,補體終末成分家族(C6、C7、C8和C9)中僅C6被發現。
1.1 C1q
C1q蛋白分子在文昌魚(Branchiostoma belcheri)[9]、玻璃海鞘(Ciona intestinalis)[10]、紫海膽(Strongylocentrotus purpuratus)[11]、霸王蓮花青螺(Lottia gigantean)[12]、海蠕蟲(Capitella teleta)[12]、佛羅里達海牛(Trichechus manatus latirostris)[13]、櫛孔扇貝(Chlamys farreri)[14]、海灣扇貝(Argopecten irradias)[15]、紫貽貝(Mytilus galloprovincialis)[16]、文蛤(Meretrix meretrix)[17]、近江牡蠣(Crassostrea ariakensis)[18]和堡礁海綿(Amphimedon queenslandica)[19]等海洋無脊椎動物中被報道。研究發現作為補體經典途徑的啟動分子Clq,在海洋無脊椎動物中存在大量的含有Clq結構域的ClqDC分子[20]。在長牡蠣(Crassostrea gigas)中發現了321個亞型[21]。
在哺乳動物中Clq分子是由6個亞單位組成的異源六聚體,各單位N端為聚成束狀的膠原區,C端為放射狀球形的Clq結構域,依其分子結構被分為ClqA、ClqB和ClqC三個亞家族。對海洋無脊椎動物C1q結構分析表明這些ClqDC分子均不屬于哺乳動物的ClqA、ClqB和ClqC亞家族,但是存在C1q分子的特征結構域[22]。
1.2 M BL和ficolin
海洋無脊椎動物中MBL蛋白分子在文昌魚[23]和玻璃海鞘[24]中被發現并存在數量較多的亞型。ficolin蛋白分子在文昌魚[25]、真海鞘(Halocynthia roretai)[26]、玻璃海鞘[24]、紫海膽[11]、長牡蠣[27]和堡礁海綿[19]等海洋無脊椎動物中都有發現,與MBL不同的是亞型數量有所減少。
MBL和ficolin分子的結構和Clq相似,N端均為聚成束狀的膠原區,僅在C端的放射狀球形結構域上各自有所差別。在海洋無脊椎動物中除MBL分子外,真海鞘中還發現了MBL類似分子——葡萄糖結合型凝集素(GBL),GBL的C端與MBL類似,存在一個C型凝集素的CRD;而N端與MBL不同,不存在膠原蛋白區域,而含有一段α螺旋[28]。此外,在玻璃海鞘中還存在其它MBL或ficolin的類似物,如ficolin的類似分子AsFCN[26]和MBL-like分子[29]。近期的研究發現,海洋無脊椎動物中含有大量的C型凝集素(含有甘露糖結合型CTLD結構),以及含纖維蛋白原樣結構域(FBG)的纖維蛋白原相關蛋白(FREPs),但是在結構上大都缺少MBL或ficolin分子N端的膠原蛋白區域,少數存在類似海鞘GBL的α螺旋區域[30]。
1.3 MASP
海洋無脊椎動物中僅文昌魚報道了MASP1和MASP3分子[23],以及真海鞘[31]和海葵[32]中報道了MASP1分子。除此之外,在其它海洋無脊椎動物中目前未有該家族分子的報道。MASP分子C端擁有絲氨酸結構域,其它結構域主要包括補體控制蛋白(CCP)和胰島素樣絲氨酸蛋白酶(Tryp_SPc)。與脊椎動物相比該家族基因同源性較低,除存在特征性的絲氨酸蛋白酶結構域組合外,在海洋無脊椎動物中其特征結構域的拷貝數存在差異。
1.4 B因子
B因子在文昌魚[33]、玻璃海鞘[34]、紫海膽[35]、圓尾鱟(Carcinoscorpius rotundicauda)[36]和歐洲溝紋蛤仔(Ruditapes decussatus)[37]等海洋無脊椎動物中被報道,并且存在一定數量的亞型。
B因子結構與MASP分子相似,均為含絲氨酸結構域分子,主要包括相同短序列重復(SCR)、A型血管性血友病因子(VWA)和絲氨酸蛋白結構域。與脊椎動物相比,在海洋無脊椎動物中B因子的分子結構同源性較高,但是仍然具有差異。海鞘的B因子在N端另外具有2個A類低濃度脂蛋白受體(LDLR)結構域和1個CCP結構域,中國鱟(Tachyplens tridentatus)B因子在N端另外具有2個CCP結構域[38],其它海洋無脊椎動物B因子的N端均有不同程度結構域的增加。
1.5 C3
C3是補體系統的中心成分,已在文昌魚[39]、真海鞘[40]、玻璃海鞘[10]、日本刺參(Apostichopus japonicus)[41]、縱條磯海葵(Haliplanella lineate)[42]、圓尾鱟[36]、刺柳珊蝴(Swiftia exserta)[43]、堡礁海綿[19]、歐洲溝紋蛤仔[37]、霸王蓮花青螺[12]、紫海膽[35]、長牡蠣[27]和夏威夷短尾魷魚(Euprymna scolopes)[44]等海洋無脊椎動物中被報道。C3分子與大部分補體分子一樣在海洋無脊椎動物中存在多種亞型。
C3是一種β2糖蛋白,由α和β兩條肽鏈組成,屬于硫酯蛋白(TEP)超家族。這類分子在結構上都含有高度保守的α2巨球蛋白結合蛋白酶區域的一個硫酯鍵位點(thioester site)[45]。在已發現的海洋無脊椎動物C3分子的研究表明,其結構與脊椎動物高度同源。
1.6 C6
C6蛋白分子作為一種典型的嵌合糖蛋白是補體終末成分(TCC)家族的一員。在海洋無脊椎動物中,該家族成分僅C6分子被發現于文昌魚[46]。研究發現除文昌魚外的海洋無脊椎動物雖然缺乏TCC家族的分子,但是復合膜攻擊穿孔蛋白(MACPF)結構域作為該家族的共有保守結構域在大部分海洋無脊椎動物中被證明存在[5]。
海洋無脊椎動物補體成分的功能研究尚處于個體物種零星報道的初步階段。最新研究表明,在海洋無脊椎動物中補體系統各成分存在多種亞型的同時,各單一成分亞型之間功能上可能存在差異。
2.1 C1q
C1q是激活補體經典途徑的模式識別受體分子,由于普遍認為海洋無脊椎動物缺乏抗體,其C1q的功能一直未被系統的描述。研究發現文昌魚AmphiC1q1分子能被LPS和細菌刺激上調,而且具有抑制血小板凝集等高等脊椎動物Clq分子的特性[47]。在軟體動物櫛孔扇貝和海灣扇貝的C1q研究中發現這些分子可以被微生物或LPS刺激而上調,并且具有凝菌活性,該活性可以被D-甘露糖和肽聚糖所抑制[22]。同時WANG等[14]發現櫛孔扇貝的C1q分子能識別高等動物IgG抗體并與之結合,類似的結果在文蛤[17]和斑節對蝦(Penaeusmonodon)[48]中也有所體現。
2.2 MBL和ficolin
在海洋無脊椎動物中對MBL和ficolin兩個分子的功能研究發現,其功能與哺乳動物的MBL分子功能類似。海鞘的GBL分子也能與海鞘的MASP結合激活凝集素途徑[28],在櫛孔扇貝CfLec-1的研究中發現其還具有調理的作用[49]。在文昌魚中發現的一個ficolin同源分子BjFCN1被證明參與了補體凝集素途徑[25]。同時,含CTLD結構的C型凝集素和含有FBG結構的FREP在海洋無脊椎動物中均參與了免疫反應。在海灣扇貝C型凝集素AiCTL-9的研究確認其在Ca2+存在的情況下能對特定的菌種產生凝集反應[50],而在櫛孔扇貝CfFREP的研究中未發現其凝菌活性[51]。
2.3 MASP
對海鞘的MASP功能研究認為,其功能上與脊椎動物MASP分子存在高度保守性,均結合MBL或ficolin分子發揮作用[31]。
2.4 B因子
海洋無脊椎動物中B因子的功能研究集中在旁路途徑的功能驗證上,在一定程度上證明了B因子在功能上的保守性。此外,在鱟中發現B因子可以和C3結合形成復合物,在Mg2+存在下,使C3結合到革蘭氏陽性菌或酵母表面[38],說明在海洋無脊椎動物中B因子還具有脊椎動物凝集途徑的相關功能。
2.5 C3
在海洋無脊椎動物中C3分子功能的研究表明其具有類似于脊椎動物C3的補體功能、調理作用和吞噬作用[52],PINTO等[53]研究了海鞘的C3a的活性片段,發現其能介導炎癥作用,在功能上與脊椎動物存在高度保守。HIBINO等[8]在玻璃海鞘中對C3三個亞型(CiC3-1、CiC3-2和CiC3-3)進行研究發現,CiC3-1和CiC3-2在成體中表達,CiC3-3只在幼體中表達,并認為CiC3-3可能不參與補體途徑而與幼體的生長發育有關。這也驗證了在海洋無脊椎動物中部分補體家族成分未分離多亞型的存在,可能分擔不同的功能,較脊椎動物相比甚至更多的觀點。
海洋無脊椎動物補體激活途徑的研究目前處于初步分析和假說階段。近年來,無脊椎動物的補體激活途徑在一些代表物種上逐步開始了相應的研究。由于脊索動物存在真正意義上的MASP基因,NONAKA等[54]研究了海鞘的補體激活途徑后認為其存在凝集素激活途徑。當然目前未能解釋海葵中MASP基因與凝集素激活途徑的關系。研究認為C3分子和B因子普遍存在于海洋無脊椎動物中,因此旁路途徑全面存在于海洋無脊椎動物中,但是不存在經典途徑[55]。然而,目前均缺乏這兩個途徑在海洋無脊椎動物中存在的系統性實驗證據,未能解釋C1q在海洋無脊椎動物中普遍存在的原因。個別海洋無脊椎動物C1q功能的研究預示著其可能參與凝集素激活途徑,但是缺乏系統證據。在海洋無脊椎動物中針對終末途徑的研究有過初步的探索。THAI等[56]研究認為,由于在文昌魚中缺乏FIM結構域負責調控的C345C結構域的C5分子,所以其發現的C6成分不具有脊椎動物終末途徑的活性,并認為在海洋無脊椎動物中不存在終末途徑。另外,針對海鞘分泌的毒液研究發現,其中含有大量的MACPF結構域的非TCC分子蛋白并且有很高的溶血功能,認為其中可能存在原始的類似終末途徑[5]。
此外,TAGAWA等[38]研究報道了一個有B因子參與的中國鱟的補體激活途徑,研究發現中國鱟中TtCRP-1、TL-5A、TL-1和TPL-1分子可以召集C3和B因子的復合物到革蘭氏陽性菌和酵母表面形成C3轉化酶,進而催化更多的C3分子結合到這些微生物表面,同時還發現一個未知的C因子參與其中,表明其不同于脊椎動物的補體激活途徑的存在可能。這可能預示著海洋無脊椎動物具有更多特有的補體激活途徑,并且涉及范圍和角色也有所不同。基于海洋無脊椎動物補體成分和功能的研究現狀,其補體激活途徑和機制是研究的熱點。
補體系統中的大多數成分有著特征性的結構域及其組合形式,可以利用基因的結構分析研究補體系統的起源與進化。C3是被認為最早出現的補體分子,其在無脊椎動物中的結構被證實和高等動物C3分子高度同源[52]。研究同時發現多孔動物中存在部分補體成分丟失現象。在海綿中不存在C3分子但是存在其旁系同源TEP分子,又鑒于TEP分子從細菌開始廣泛的分布于生物中,針對這種現象CERENIUS等[57]認為從刺胞動物開始由于過敏毒素(ANATO)等結構域的插入才出現真正意義上的C3分子。
成分上的進化容易被描述,然而途徑角度的進化則較模糊而不容易被描述。研究發現,海鞘的凝集素激活途徑與脊椎動物的凝集素激活途徑相似,存在明顯的進化痕跡但未知其途徑機制[54],類似的研究結果在紫貽貝中得到了驗證[58]。在海葵中發現MASP的證據也預示了脊椎動物的凝集素途徑可能演變于原始的低等海洋無脊椎動物中。在鱟的未知補體C因子的途徑研究表明,海洋無脊椎動物的旁路途徑與脊椎動物的途徑相比,既存在進化痕跡又存在較大的差異,同樣未知其途徑機制[59]。目前對終末途徑和經典途徑進化演變的研究認為它們均起源于有頜類脊椎動物,并預測海洋無脊椎動物的終末途徑可能是僅由部分成分結構域參與組成的新途徑[5]。
由于缺少大量的基礎研究,整體上海洋無脊椎動物補體系統進化演變的研究缺乏系統的實驗證據。NONAKA[55]提出了補體系統進化的觀點,認為在I因子依賴的調節機制出現之前的無脊椎動物中存在原始的補體系統,隨著I因子在低等脊椎動物中的產生進而出現了中級系統,最后在大規模基因復制事件[60]發生后在脊椎動物中出現了完善的補體系統(圖1)。HIBINO等[8]的研究也證實了這一觀點。

圖1 補體系統的進化[55]Fig.1 Evolution of com p lem ent system
綜上所述,補體系統在海洋無脊椎動物中的研究尚處于初級階段,研究主要集中在補體系統的固有成分,而且較脊椎動物而言補體成分不全,存在單一成分多亞型的現象。另外,補體受體成分和補體結合蛋白在海洋無脊椎動物中的研究報道較少,僅有真海鞘中與CR3受體分子功能相似的整合素α和β亞單位分子[61-62]、玻璃海鞘中 C3aR受體分子[63]以及斑節對蝦中C1qBP的研究[48]。在脊椎動物中補體活性片段成分的研究常常伴隨深入的功能研究,在海洋無脊椎動物中這方面的研究較缺乏,僅見于海鞘C3裂解片段的報道。海洋無脊椎動物補體成分的功能研究基本處于與高等脊椎動物補體成分功能的模擬驗證階段,未深入研究其在生命過程中的作用及其自身特有的途徑。但是,隨著越來越多的動物全基因組測序的完成,以及高通量測序技術的大規模應用,海洋無脊椎動物中補體成分基因將逐漸被發現,隨之補體在海洋無脊椎動物中的功能和途徑研究也將更加完善,為我們解決養殖病害、生長抗逆問題提供了可觀的前景。
[1] MYLONAKISE,AUSUBEL FM,GILMORE M,etal.Recent advances on model hosts[M].New York:Springer Science&Business Media,2011.
[2] 晏沐陽,宋宏彬,賈雷立,等.補體學[M].北京:科學出版,2009:1-7.
YAN M Y,SONG H B,JIA L L,et al.Complementology[M].Beijing:Sience Press,2009:1-7.
[3] 章躍陵,趙賢亮,嚴 芳.無脊椎動物免疫分子的多態性[J].中國生物化學與分子生物學報,2010,26(3):209-214.
ZHANG Y L,ZHAO X L,YAN F.Polymorphisms of immune molecules in invertebrates[J].Chinese Journal of Biochemistry and Molecular Biology,2010,26(3):209-214.
[4] SONG W C,SARRIAS M R,LAMBRIS J D.Complement and innate immunity[J].Immunopharmacology,2000,49(1):187-198.
[5] NONAKA M,KIMURA A.Genomic view of the evolution of the complement system[J].Immunogenetics,2006,58(9):701-713.
[6] ABBASA K,LICHTMAN A H,PILLAIS.Cellular and Molecular Immunology[M].New York:Elsevier Medicine,2011.
[7] IWANAGA S,LEE B L.Recent advances in the innate immunity of invertebrate animals[J].BMB Reports,2005,38(2):128-150.
[8] HIBINO T,NONAKA M.A novel third complement component C3 gene ofCiona intestinalisexpressed in the endoderm at the early developmental stages[J].Isj-Invertebrate Survival Journal,2013,10(1):29-37.
[9] AZUMIK,DE SR,DE TA,et al.Genomic analysis of immunity in a urochordate and the emergence of the vertebrate immune system:“Waiting for Godot”[J].Immunogenetics,2003,55(8):570-581.
[10] MARINO R,KIMURA Y,DE SR,etal.Complement in urochordates:Cloning and characterization of two C3-like genes in the ascidian Ciona intestinalis[J].Immunogenetics,2002,53(12):1055-1064.
[11] SODERGREN E,WEINSTOCK GM,DAVIDSON E H,et al.The genome of the sea urchin Strongylocentrotus purpuratus[J].Science,2006,314(5801):941-952.
[12] SIMAKOV O,MARLETAZ F,CHO S J,et al.Insights into bilaterian evolution from three spiralian genomes[J].Nature,2013,493(7433):526-531.
[13] LOWE TM,EDDY SR.tRNAscan-SE:A program for improved detection of transfer RNA genes in genomic sequence[J].Nucleic Acids Research,1997,25(5):955-964.
[14] WANG L L,WANG L L,ZHANG H,et al.A C1q domain containing protein from scallopChlamys farreriserving as pattern recognition receptor with heat-aggregated IgG binding activity[J].Plos One,2012,7(8):e43289.
[15] WANG L L,WANG L L,KONG P F,et al.A novel C1qDC protein acting as pattern recognition receptor in scallopArgopecten irradians[J].Fish&Shellfish Immunology,2012,33(2):427-435.
[16] GERDOL M,MANFRIN C,DE M G,et al.The C1q domain containing proteins of the Mediterranean musselMytilus galloprovincialis:A widespread and diverse family of immune-related molecules[J].Developmental&Comparative Immunology,2011,35(6):635-643.
[17] 隋立軍,劉衛東,李云峰,等.文蛤C1q基因的克隆與表達及其重組蛋白活性的研究[J].水產科學,2012,31(6):321-328.
SUI L J,LIU W D,LI Y F,et al.Molecular cloning,mRNA expression and bioassay of recombinant protein of C1q gene from hard clam(Meretrix meretrix)[J].Fisheries Science,2012,31(6):321-328.
[18] XU T,XIE J S,LI J M,et al.Identification of expressed genes in cDNA library of hemocytes from the RLO-challenged oyster,Crassostrea ariakensisGould with special functional implication of three complement-related fragments(CaC1q1,CaC1q2 and CaC3)[J].Fish&Shellfish Immunology,2012,32(6):1106-1116.
[19] SRIVASTAVA M,SIMAKOV O,CHAPMAN J,et al.TheAmphimedon queenslandicagenome and the evolution of animal complexity[J].Nature,2010,466(7307):720-726.
[20] CARLAND T M,GERWICK L.The C1q domain containing proteins:Where do they come from and what do they do?[J].Developmental&Comparative Immunology,2010,34(8):785-790.
[21] JIANG S,LIH,ZHANG D X,etal.A C1q domain containing protein fromCrassostrea gigasserves as pattern recognition receptor and opsonin with high binding affinity to LPS[J].Fish&Shellfish Immunology,2015.
[22] KONGPF,ZHANGH,WANG L L,etal.AiC1qDC-1,a novel gC1q-domain-containing protein from bay scallopArgopecten irradianswith fungi agglutinating activity[J].Developmental&Comparative Immunology,2010,34(8):837-846.
[23] HUANG S F,YUAN SC,GUO L,et al.Genomic analysis of the immune gene repertoire of amphioxus reveals extraordinary innate complexity and diversity[J].Genome Research,2008,18(7):1112-1126.
[24] SKJOEDTM O,PALARASAH Y,RASMUSSEN K,et al.Two mannose-binding lectin homologues and an MBL-associated serine protease are expressed in the gut epithelia of the urochordate species Ciona intestinalis[J].Developmental&Comparative Immunology,2010,34(1):59-68.
[25] HUANG H Q,HUANG S F,YU Y C,et al.Functional characterization of a ficolin-mediated complement pathway in amphioxus[J].Journal of Biological Chemistry,2011,286(42):36739-36748.
[26] KENJO A,TAKAHASHIM,MATSUSHITA M,etal.Cloning and characterization of novel ficolins from the solitary ascidian,Halocynthia roretzi[J].Journal of Biological Chemistry,2001,276(23):19959-19965.
[27] ZHANG G F,FANG X D,GUO X M,et al.The oyster genome reveals stress adaptation and complexity of shell formation[J].Nature,2012,490(7418):49-54.
[28] SEKINEH,KENJOA,AZUMIK,etal.An ancient lectin-dependent complement system in an ascidian:Novel lectin isolated from the plasma of the solitary ascidian,Halocynthia roretzi[J].The Journal of Immunology,2001,167(8):4504-4510.
[29] BONURA A,VIZZINI A,SALERNO G,et al.Isolation and expression of a novel MBL-like collectin cDNA enhanced by LPS injection in the body wall of the ascidian Ciona intestinalis[J].Molecular Immunology,2009,46(11):2389-2394.
[30] FAN C X,ZHANG S C,LI L,et al.Fibrinogenrelated protein from amphioxus Branchiostomabelcheriis a multivalent pattern recognition receptor with a bacteriolytic activity[J].Molecular immunology,2008,45(12):3338-3346.
[31] JIX,AZUMIK,SASAKIM,et al.Ancient origin of the complement lectin pathway revealed by molecular cloning of mannan binding proteinassociated serine protease from a urochordate,the Japanese ascidian,Halocynthia roretzi[J].Proceedings of the National Academy of Sciences,1997,94(12):6340-6345.
[32] KIMURA A,SAKAGUCHIE,NONAKA M.Multicomponent complement system of Cnidaria:C3,Bf,and MASP genes expressed in the endodermal tissues of a sea anemone,Nematostella vectensis[J].Immunobiology,2009,214(3):165-178.
[33] HE Y A,TANG B,ZHANG SC,et al.Molecular and immunochemical demonstration of a novel member of Bf/C2 homolog in amphioxus Branchiostoma belcheri:Implications for involvement of hepatic cecum in acute phase response[J].Fish&Shellfish Immunology,2008,24(6):768-778.
[34] YOSHIZAKI F Y,IKAWA S,SATAKE M,et al. Structure and the evolutionary implication of the triplicated complement factor B genes of a urochordate ascidian,Ciona intestinalis[J].Immunogenetics,2005,56(12):930-942.
[35] GROSS P S,CLOW L A,SMITH L C.SpC3,the complement homologue from the purple sea urchin,Strongylocentrotus purpuratus,is expressed in two subpopulations of the phagocytic coelomocytes[J].Immunogenetics,2000,51(12):1034-1044.
[36] DING J L,TAN K C,THANGAMANI S,et al.Spatial and temporal coordination of expression of immune response genes during Pseudomonas infection of horseshoe crab,Carcinoscorpius rotundicauda[J].Genes and Immunity,2005,6(7):557-574.
[37] PRADOáM A,ROTLLANT J,GESTAL C,et al.Characterization of a C3 and a factor B-like in the carpet-shell clam,Ruditapes decussatus[J].Fish&Shellfish Immunology,2009,26(2):305-315.
[38] TAGAWA K,YOSHIHARA T,SHIBATA T,et al.Microbe-specific C3b deposition in the horseshoe crab complement system in a C2/factor B-dependent or-independent manner[J].Plos One,2012,7(5):e36783.
[39] ZHANG S C,WANG C F,WANG Y J,et al.Presence and characterization of complement-like activity in the amphioxusBranchiostoma belcheritsingtauense[J].Zoological Science,2003,20(10):1207-1214.
[40] NONAKA M,AZUMI K,JI X,et al.Opsonic complement component C3 in the solitary ascidian,Halocynthia roretzi[J].The Journal of Immunology,1999,162(1):387-391.
[41] ZHOU Z C,SUN D P,YANG A F,etal.Molecular characterization and expression analysis of a complement component 3 in the sea cucumber(Apostichopus japonicus)[J].Fish&Shellfish Immunology,2011,31(4):540-547.
[42] FUJITO N T,SUGIMOTO S,NONAKA M.Evolution of thioester-containing proteins revealed by cloning and characterization of their genes from a cnidarian sea anemone,Haliplanella lineate[J].Developmental&Comparative Immunology,2010,34(7):775-784.
[43] DISHAW L J,SMITH S L,BIGGER C H.Characterization of a C3-like cDNA in a coral:Phylogenetic implications[J].Immunogenetics,2005,57(7):535-548.
[44] CASTILLO M G,GOODSON M S,MCFALL N M.Identification and molecular characterization of a complement C3 molecule in a lophotrochozoan,the Hawaiian bobtail squidEuprymna scolopes[J].Developmental&Comparative Immunology,2009,33(1):69-76.
[45] SFYROERA G,RICKLIN D,REISE S,etal.Rare loss-of-function mutation in complement component C3 provides insight into molecular and pathophysiological determinants of complement activity[J].The Journal of Immunology,2015,194(7):3305-3316.
[46] SUZUKIM M,SATOH N,NONAKA M.C6-like and C3-like molecules from the cephalochordate,amphioxus,suggesta cytolytic complement system in invertebrates[J].Journal of Molecular Evolution,2002,54(5):671-679.
[47] YU Y H,HUANG H Q,WANG Y,et al.A novel C1q family member of amphioxus was revealed to have a partial function of vertebrate C1q molecule[J].The Journal of Immunology,2008,181(10):7024-7032.
[48] 劉先軍,楊麗詩,黃建華,等.斑節對蝦C1q結合蛋白(PmC1qBP)的克隆及表達特征分析[J].中國水產科學,2011,18(4):774-781.
LIU X J,YANG L S,HUANG JH,et al.Cloning and expression profile analsys C1q-binding protein(PmC1qBP)in peneaus monodon[J].Journal of Fishery Sciences of China,2011,18(4):774-781.
[49] YANG J L,WANG L L,ZHANG H,et al.C-type lectin inChlamys farreri(CfLec-1)mediating immune recognition and opsonization[J].Plos One,2011,6(2):e17089.
[50] WANG L L,WANG L L,YANG J L,et al.A multi-CRD C-type lectin with broad recognition spectrum and cellular adhesion fromArgopecten irradians[J].Developmental&Comparative Immunology,2012,36(3):591-601.
[51] 王雷雷.扇貝補體相關分子的結構及功能研究[D].青島:中國科學院研究生院 (海洋研究所),2013.
WANG L L.The structural and functional study of the complement related molecules in scallops[D].Qingdao:Institute of Oceanology,Chinese Academy of Sciences,2013.
[52] NONAKA M.The complement C3 protein family in invertebrates[J].Invertebrate Survival Journal, 2011,8(1):21-32.
[53] PINTO M R,CHINNICIC M,KIMURA Y,et al.CiC3-1a-mediated chemotaxis in the deuterostome invertebrateCiona intestinalis(Urochordata)[J].The Journal of Immunology,2003,171(10):5521-5528.
[54] NONAKA M,YOSHIZAKI F.Primitive complement system of invertebrates[J].Immunological Reviews,2004,198(1):203-215.
[55] NONAKA M,Evolution of the complement system in MACPF/CDC Proteins-Agents of Defence,Attack and Invasion[M].New York:Springer Science&Business Media,2014:31-43.
[56] THAI C T,OGATA R T.Complement components C5 and C7:Recombinant factor I modules of C7 bind to the C345C domain of C5[J].The Journal of Immunology,2004,173(7):4547-4552.
[57] CERENIUS L,KAWABATA S I,LEE B L,et al.Proteolytic cascades and their involvement in invertebrate immunity[J].Trends in Biochemical Sciences,2010,35(10):575-583.
[58] ROMERO A,DIOSS,POISA B L,et al.Individual sequence variability and functional activities of fibrinogen-related proteins(FREPs)in the Mediterranean mussel(Mytilus galloprovincialis)suggest ancient and complex immune recognition models in invertebrates[J].Developmental&Comparative Immunology,2011,35(3):334-344.
[59] ARIKIS,TAKAHARA S,SHIBATA T,et al.Factor C acts as a lipopolysaccharide responsive C3 convertase in horseshoe crab complement activation[J].The Journal of Immunology,2008,181(11):7994-8001.
[60] OHTA Y,GOETZ W,HOSSAIN M Z,et al.Ancestral organization of the MHC revealed in the amphibianXenopus[J].The Journal of Immunology,2006,176(6):3674-3685.
[61] MIYAZAWA S,AZUMI K,NONAKA M.Cloning and characterization of integrinαsubunits from the solitary ascidian,Halocynthia roretzi[J].The Journal of Immunology,2001,166(3):1710-1715.
[62] MIYAZAWA S,NONAKA M.Characterization of novel ascidianβintegrins as primitive complement receptor subunits[J].Immunogenetics,2004,55(12):836-844.
[63] MELILLO D,SFYROERA G,DE SR,et al.Firstidentification of a chemotactic receptor in an invertebrate species:Structural and functional characterization ofCiona intestinalisC3a receptor[J].The Journal of Immunology,2006,177(6):4132-4140.
Complement system in marine invertebrate
PENG Mao-xiao,NIU Dong-hong,LIJia-le
(Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources,Shanghai Ocean University,Ministry of Education,Shanghai201306,China)
The complement system is an important part of innate immunity and plays a vital role in immune responses.This study can provide theoretical basis for disease control of the economic farming of marine invertebrates.This article described the ingredients including C1q,MBL,ficolin,MASP,B factor,C3,and C6 etc.,which had been found in the complement system ofmarine invertebrates.The inherent component of the complement system in marine invertebrates is a major study subject requiring deep research.Though our understanding of complement receptor,active fragment and binding protein is growing,it is still limited in mammalian vertebrates.The complement component of marine invertebrates is less than that in the vertebrates,there are different subtypes in terms of the amount in a single component,in most case,the number of subtypes is large.Different individuals vary greatly in the complement components and they have different expression in differet periods of developmental stage.We compared the function of complement component in marine invertebrate,finding that each complement component was presented in a variety of subtypes and there were differences between the functions of various subtypes.We also described some of the primary actors and pathways of the complement system inmarine invertebrates.Lectin pathway and alternative pathway potentially existed in marine invertebrates,but the classic pathway and terminal pathway were not found yet.After comparison of the vertebrate and invertebrate complement pathway,we found thatmarine invertebratesmay have their special features in terms of these pathways.The research on complement pathway in marine invertebrates is relatively limited.No systematic theoretical model has been developed to fully display the development ofmarine invertebrate complement pathway.This article also described the evolution ofmarine invertebrate complement system and compared with vertebrate the invertebrate features of evolution of complement component obviously.In the pathway there was not only the trace of evolution but also the existence of significant differences.At present,the state of research of complement system in invertebrates is primary.The development ofmarine invertebrates complement is fast,but short of basic research,failing to establish a large-scale system of theoreticalmodels.With more finished full sequence of gene from different species,and the use of technology of height sequence in study,gradually,complement gene will be found,and the function and pathway will be improved in marine invertebrates.The exploratory study of complement system in marine invertebrate will offer a critical framework for better understanding of immune system and stress resistance in the growth ofmarine invertebrates.
marine invertebrate;complement system;complement pathway;evolution
S 917
A
1004-2490(2016)03-0320-09
2015-07-03
國家“863”高技術研究發展計劃(2012AA10A400);國家自然科學基金(31472278);上海知識服務平臺(ZF1206)
彭茂瀟(1991-),男,浙江溫州人,碩士研究生,研究方向為水產動物遺傳育種。E-mail:maoxiaoccc@qq.com
李家樂,教授,博士生導師。E-mail:jlli@shou.edu.cn