曾 莉 張建偉
(首都醫(yī)科大學(xué)化學(xué)生物學(xué)與藥學(xué)院化學(xué)生物學(xué)系,北京100069)
已有研究[1-5]顯示,Arg-Gly-Asp(RGD)序列肽可用于心血管疾病、骨質(zhì)疏松和炎性反應(yīng)等疾病的治療,還可以預(yù)防和治療由細(xì)胞黏附異常而導(dǎo)致的腫瘤,尤其是發(fā)展性腫瘤的轉(zhuǎn)移;另一方面,RGD序列肽又可作為興奮劑,促進(jìn)損傷的器官與組織的再生、傷口的愈合等,具有廣泛的生物學(xué)功能。
大多數(shù)內(nèi)源性線性肽在循環(huán)過程中半衰期較短,其治療效果和生物活性有所減弱。為了獲得可以接受的抗腫瘤轉(zhuǎn)移效果,往往需要高劑量的含RGD序列的線性肽,這無疑增加了治療費(fèi)用并有可能導(dǎo)致多余的不良反應(yīng)。因此,增加肽類化合物穩(wěn)定性、提高肽的生物活性,是許多藥物化學(xué)家們對含RGD肽進(jìn)行改造的目標(biāo)。
在自然界,糖基化天然產(chǎn)物的存在是十分普遍的[6-7]。這些天然分子的糖基部分可以通過增加溶解性、調(diào)節(jié)血漿半衰期、提高結(jié)合的特異性而改變母體藥物的藥理活性[8-9]。
作者對含RGD序列肽糖基化化學(xué)合成方法進(jìn)行了研究。利用了葡萄糖醛酸上的羧基與氨基酸上的氨基連接成酰胺鍵,成為一類新型的糖肽,期望糖基化后對RGDV的活性能夠有所改善[9-14]。如能成功,可以在此基礎(chǔ)上進(jìn)行結(jié)構(gòu)改造為藥物設(shè)計(jì)提供候選化合物。通過葡萄糖醛酸的糖基化為含RGD肽的結(jié)構(gòu)改造提供一個(gè)實(shí)用的方法。
熔點(diǎn)用SM/XMT型北京科儀電光儀器廠毛細(xì)管熔點(diǎn)儀測定(溫度計(jì)未校正),1HNMR和13CNMR由BrukerAM-500磁共振儀測定,CDCl3為溶劑,TMS為內(nèi)標(biāo),ESI-MS用Waters Micromass 2695-2487-ZQ2000-Masslynx 4.0 LC/MS質(zhì)譜儀測定。HRMS MS用Quattro Micro ZQ2000(Waters公司,美國)質(zhì)譜儀測定。
1)3,4,5,6-四-乙?;?四氫吡喃-2-羧酸〔圖 1(2)〕的制備:35℃油浴下,在50 mL茄瓶中加入4.5 mL醋酐和0.2 mL高氯酸,再加入0.458 g葡萄糖醛酸,反應(yīng)數(shù)小時(shí)后加入40 mL水,用乙酸乙酯萃取等處理,最后用乙醇-石油醚重結(jié)晶得圖1(2)白色固體。
2)3,4,5,6-四-乙?;?四氫吡喃-2-?;?R(NO2)-G-D(OCH3)-V-OBzl圖2(4)的制備:稱取3,4,5,6-四-乙酰基-四氫吡喃-2-羧酸(2)285 mg于100 mL茄瓶中,用5 mL THF溶解,冰浴攪拌下加入128 mg HOBt和195 mg DCC得A溶液。稱取632 mg H-R(NO2)-G-D(OCH3)-V-OBzl于25 mL茄瓶中,加5 mL THF溶解,用NMM調(diào)pH至7得B溶液。將B溶液加入A溶液中,調(diào)pH值至9。24 h后,過濾,濾液旋干后用200 mL乙酸乙酯溶解,依次用飽和NaHCO3溶液、飽和NaCl溶液、5%KHSO4溶液、飽和NaCl溶液、飽和NaHCO3溶液、飽和NaCl溶液各30 mL洗3次,無水硫酸鈉干燥。過濾旋干,柱層析分離,得圖2(4)白色固體。
筆者對葡萄糖醛酸乙?;磻?yīng)進(jìn)行了研究。以葡萄糖醛酸和乙酸酐為原料,通過一步反應(yīng),制備得到3,4,5,6-四-乙?;?四氫吡喃-2-羧酸〔圖 1(2)〕0.530 mg。產(chǎn)率:62%。圖 1(2)化合物:1HNMR:(500 MHz,CDCl3):6.43(d,1H,J=3.5 Hz),5.55(t,1H,J=9.8 Hz),5.30(t,1H,J=9.8 Hz),5.15(dd,1H,J1=3.5 Hz,J2=10.2 Hz),4.48(d,J=10.2 Hz);13CNMR:(75 MHz,CDCl3)170.1,170.0,169.8,169.6,168.6,88.7,69.9,69.1,68.9,68.8,20.8,20.6,20.5,20.4;ESIMS m/z 361(M-1)。HRMS 理論值:(C14H18O11-1),m/z(361.0771);實(shí)測值:(361.0712)。

圖 1 3,4,5,6-四-乙酰基-四氫吡喃-2-羧酸的制備Fig.1 Preparation of 3,4,5,6-tetraacetoxytetrahydro-2H-pyran-2-carboxylic acid
筆者將得到的圖1(2)與圖2(3)反應(yīng)制備得到3,4,5,6-四-乙?;?四氫吡喃-2-?;?R(NO2)-G-D(OCH3)-V-OBzl〔圖 2(4)〕140 mg,產(chǎn)率 19%。圖 2(4)化 合 物:[α]25D=-21.3(C=0.001,CH3OH);1HNMR:(500 MHz,CDCl3):7.72(s,1H),7.53(s,1H),7.49(s,1H),7.47(s,1H),7.39(s,1H),7.36(m,5H),6.38(d,1H,J=3.6 Hz),5.54(t,1H,J=10.3 Hz),5.25(t,1H,J=9.8 Hz),5.16(dd,2H,J1=12.2 Hz,J2=41.2 Hz),5.15(dd,1H,J1=11.5 Hz,J2=3.6 Hz),4.95(dd,1H,J1=6.8 Hz,J2=13.0 Hz),4.62(m,1H),4.46(dd,1H,J1=5.2 Hz,J2=8.4 Hz),4.35(d,1H,J=10.2 Hz),4.10(dd,1H,J1=5.7 Hz,J2=16.7 Hz),3.90(dd,1H,J1=5.7 Hz,J2=16.7 Hz),3.68(s,3H),2.91(dd,1H,J1=5.6 Hz,J2=17.0 Hz),2.77(dd,1H,J1=5.6 Hz,J2=17.0 Hz),2.20(m,1H),2.19(s,3H),2.07(s,3H),2.05(s,3H),2.04(s,3H),1.91(m,2H),1.77(m,2H),1.67(s,2H),0.92(d,3H,J=6.8 Hz),0.89(d,3H,J=6.9 Hz);13CNMR(125 MHz,CDCl3)172.2,171.8,171.4,170.6,170.2,169.8,169.7,169.1,168.8,167.2,159.5,135.3,128.6,128.5,128.3,88.6,70.8,69.5,69.0,67.1,57.9,52.2,52.0,49.4,43.1,40.6,36.1,29.5,20.8,20.7,20.6,20.4,19.0,17.7;ESIMS m/z 940(M)。HRMS 理論值:(C39H54N8O19-1),m/z(939.3572);實(shí)測值:(939.3661)。

圖 23,4,5,6-四-乙?;?四氫吡喃-2-酰基-R(NO2)-G-D(OCH3)-V-OBzlFig.2 Preparation of 3,4,5,6-tetraacetoxytetrahydro-2H-pyran-2-carboxyl-R(NO2)-G-D(OCH3)-V-OBzl
對于長肽的合成來說一般有逐步增長和片段縮合兩種伸長肽鏈的方式,在具體合成某一多肽時(shí),根據(jù)不同情況可選擇逐個(gè)增長肽鏈法或片斷縮合法。由于葡萄糖醛酸原料價(jià)格較高因而筆者選用3,4,5,6-四-乙酰基-四氫吡喃-2-羧酸直接與H-R(NO2)-G-D(OCH3)-V-OBzl四肽經(jīng)DCC/HOBt作用下一步縮合。由于反應(yīng)是放熱反應(yīng),反應(yīng)開始時(shí)要在冰浴下進(jìn)行,以便降低副反應(yīng)。加入HOBt作催化劑,使羧基組分(R-COOH)與 HOBt通過 DCC發(fā)生縮和,生成活化酯,可防止副反應(yīng)的發(fā)生。反應(yīng)產(chǎn)物在水中有一定的溶解度,經(jīng)反復(fù)的酸溶液、堿溶液及氯化鈉飽和溶液清洗,部分產(chǎn)品在水中溶解。同時(shí)TLC監(jiān)測反應(yīng)進(jìn)程時(shí)葡萄糖醛酸不易顯色,通過比較寡肽原料點(diǎn)的顏色減弱變化程度來確定反應(yīng)的終點(diǎn)。這樣反應(yīng)可能沒有完全發(fā)生,因而產(chǎn)率較低。該反應(yīng)雖然產(chǎn)率不高,但在探索糖基肽的合成上作了有益的嘗試,也為藥物的開發(fā)和應(yīng)用提供了新的思維方法。這樣必將會開發(fā)出新一代的糖肽類藥物,對新藥的發(fā)展產(chǎn)生一定的影響。
[1] Yu X,Xia W,Li S A,et al.Antitumor effect and underlying mechanism of RGD-modified adenovirus mediated IL-24 expression on myeloid leukemia cells[J].Int Immunopharmacol,2015,28(1):560-570.
[2] Zhu J,F(xiàn)u F,Xiong Z,et al.Dendrimer-entrapped gold nanoparticles modified with RGD peptide and alpha-tocopheryl succinate enable targeted theranostics of cancer cells[J].Colloids and Surf B Biointerfaces,2015,133(1):36-42.
[3] Chang M L,Lu S S,Zhang F,et al.RGD-modified pH-sensitive liposomes for docetaxel tumor targeting[J].Colloids Surf B Biointerfaces,2015,129:175-182.
[4] Oliveira E A,F(xiàn)aintuch B L.Radiolabeling and biological evaluation of the GX1 and RGD-GX1 peptide sequence for angiogenesis targeting[J].Nucl Med Biol,2015,42(2):123-130.
[5] Guo Z,He B,Jin H,et al.Targeting efficiency of RGD-modified nanocarriers with different ligand intervals in response tointegrin αvβ3 clustering[J].Biomaterials,2014,35(23):6106-6117.
[6] Zhang J,Zhao M,Peng S.Synthesis of mimetic peptides containing glucosamine[J].Carbohydr Res,2011,346(13):1977-2003.
[7] 任麗.糖肽的化學(xué)合成研究進(jìn)展[J].中國藥物化學(xué)雜志,2012,22(2):142-154.
[8] Corcilius L,Santhakumar G,Stone R S,et al.Synthesis of peptides and glycopeptides with polyproline II helical topology as potential antifreeze molecules[J].Bioorg Med Chem,2013,21(12):3569-3581.
[9] Kishore G,Gautam V,Chandrasekaran S.Novel synthesis of carbohydrate fused α-amino γ-lactams and glycopeptides by NIS mediated ring opening of donor-acceptor substituted cyclopropanes[J].Carbohydr Res,2011,390:1-8.
[10]UI-Islam M,Ha J H,Khan T,et al.Effects of glucuronic acid oligomers on the production,structure and properties of bacterial cellulose[J].Carbohydr Polym,2013,92(1):360-366.
[11] Higashi K,Okamoto Y,Mukuno A,et al.Functional chondroitin sulfate from Enteroctopus dofleini containing a 3-O-sulfo glucuronic acid residue[J].Carbohydr Polym,2015,134(10):557-565.
[12] Katzenellenbogen E,Kocharova N A,Shashkov A S,et al.Structure of the O-polysaccharide of Edwardsiella tarda PCM 1150 containing an amide of D-glucuronic acid with L-alanine[J].Carbohydr Res,2013,368(7):84-88.
[13] Sánchez Lafarga A K,Pacheco Moisés F P,Gurinov A,et al.Dual responsive dysprosium-doped hydroxyapatite particles and toxicity reduction afterfunctionalization with folic and glucuronic acids[J].Mater Sci Eng C Mater Biol Appl,2015,48(1):541-547.
[14]Tavano L,Aiello R,Ioele G,et al.Niosomes from glucuronic acid-based surfactant as new carriers for cancer therapy:Preparation,characterization and biological properties[J].Colloids Surf B Biointerfaces,2014,118(138):7-13.