999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

具有學習效應的排序問題的某些新進展

2014-09-22 03:33:43
關鍵詞:排序效應模型

趙 傳 立

(沈陽師范大學 數學與系統科學學院, 沈陽 110034)

具有學習效應的排序問題的某些新進展

趙 傳 立

(沈陽師范大學 數學與系統科學學院, 沈陽 110034)

Biskup 首先將學習效應的的概念引入到排序問題中,并且在2008年給出具有學習效應的排序問題的全面綜述。從此以后,具有學習效應的排序問題持續引起研究者的興趣。除了Biskup綜述所提到的模型外,文獻中還有其他學習效應模型,對近年來文獻中出現的具有學習效應的排序模型做一簡要介紹。主要考慮3類模型:工件的實際加工時間依賴于具體的位置函數的模型,工件的實際加工時間依賴于抽象的位置函數的模型,工件的實際加工時間依賴于截斷式學習函數的模型。

排序; 學習效應; 單機; 平行機; 流水作業

作為新型排序的一個組成部分,具有學習效應的排序問題持續受到研究者的關注。在Biskup的綜述之后,近年又出現了許多新模型。這些新模型一部分是利用已有模型加以組合而成,另一部分則是對已有模型做某些推廣。本文僅介紹后一類模型,關注2009年以后的某些研究進展。主要介紹各個模型中常見目標函數在一般情況下的結論,關注多項式最優算法,不涉及啟發式算法、分支定界法等。對于特殊情況和特殊目標函數的有關結論不做介紹。

1 主要模型

主要介紹近年來產生的3類新模型:工件的實際加工時間是具體函數的模型,工件的實際加工時間是抽象函數的模型,工件的實際加工時間是截斷式學習函數的模型。

1.1工件的實際加工時間是具體函數的模型

表1 加工時間是具體函數的模型

續表1

加 工 時 間 問 題 計算復雜性或算法參考文獻pAj[r]=pj(αa∑r-1k=1p[k]+β)1pAj[r],SpsdfSPT[16]α≥0,β≥0,00pAj[r]=pj(αa∑r-1k=1lnp[k]+β)1pAj[r]fSPT[21]α≥0,β≥0,0

1.2工件的實際加工時間是抽象函數的模型

表2 加工時間是抽象函數的模型

續表2

加 工 時 間 問題計算復雜性或算法 參考文獻pAj[r]=pjf(∑r-1k=1p[k])g(r)1pAj[r]f,f∈{Cmax,∑Ckj}SPT[36?38]f不增,f′不減,g不增1pAj[r],Spsdf,f∈{Cmax,∑Cj}SPT1pAj[r],qpsdf,f∈{Cmax,∑Ckj}SPTpAj[r]=f(j,r)Fmprop,pAj[r]CmaxO(n5)[40?42]PmpAj[r]∑mi=1CiO(nm+2)[41]PmpAj[r],rej∑ACj+∑RejO(nm+3)[43]PmpAj[r],rej∑mi=1Cmaxi+∑RejO(nm+3)[43]pAj[r]=pjf(∑r-1k=1pA[k]∑nk=1pk)g(r)1pAj[r],Spsdf,f∈{Cmax,∑Cj}SPT[44]f不增,f′不減,g不增pAj[r]=pjf(∑r-1k=1βkp[k])g(r)1pAj[r]f,f∈{Cmax,∑Ckj}SPT[45]f不增,f′不減,g不增,0<βj不減pAj[r]=f(pj,r)1pAj[r],PRMαCmax+β∑Ej+λ∑TjO(n4)[46]pAj[r]=pjf(∑r-1k=1βkp[k],r),βj不減1pAj[r],Spsdf,f∈{Cmax,∑Cj}SPT[47]

1.3工件的實際加工時間是截斷式的模型

表3 截斷式學習效應模型

續表3

加 工 時 間 問題計算復雜性或算法 參考文獻pAj[r]=pjmax{raj,β},0<β<11pAj[r],CON∑(αEj+βTj+γd)O(n3)[57]1pAj[r],SLK∑(αEj+βTj+γdj)1pAj[r]ff∈{Cmax,∑Cj,∑∑Ci-CjpAj[r]=pjmax{(1-∑r-1k=1p[k]∑nk=1p[k])a,β}1pAj[r]f,f∈{Cmax,∑Cj}SPT[58]a>1,0<β<1pAj[r]=pjmax{(aα-∑r-1k=1p[k]∑nk=1pk+b),β}1pAj[r]f,f∈{Cmax,∑Ckj}SPT[60]a≥0,b≥0,a+b=1,a≥1,0<β<1

2 結 論

關于具有學習效應的排序問題還有許多結論,限于本文涉及內容和資料的局限,不可能完全提及。即使對于提到的模型的結論也難免掛一漏萬,因此文中內容僅供感興趣的讀者參考。從上節所提各個模型的研究成果來看,對于工件的實際加工時間是具體函數的模型,雖模型較多,但研究結論主要集中在單機問題。具有一般性結論的目標函數主要是最大完工時間和完工時間和,且所用方法是常見的SPT規則。對于工件的實際加工時間是抽象函數的模型,某些模型的研究結果還相對較少,有些主要集中在某一具體機器環境的特定目標函數。對于截斷式學習效應的排序模型,由于提出的時間相對較短,目前研究成果相對較少。在未來的工作中,對于各個模型可以考慮如下研究方向:對于實際加工時間是具體函數的模型,針對具體模型的機器環境是平行機還是車間作業,研究目標函數范圍更廣泛的問題;對于工件的實際加工時間是抽象函數的模型,可研究包括多個具體函數的抽象函數模型,使其結論具有一般性;對于截斷式學習效應的排序模型,根據不同的加工時間函數,考慮其他形式的階段學習效應模型。

[ 1 ]BISKUP D. Single-machine scheduling with learning considerations[J]. Eur J Oper Res, 1999,115(1):173-178.

[ 2 ]BISKUP D. A state-of-the-art review on scheduling with learning effects[J]. Eur J Oper Res, 2008,188(2):315-329.

[ 3 ]MOSHEIOV G, SIDNEY J B. Scheduling with general job-dependent learning curves[J]. Eur J Oper Res, 2003,147(3):665-670.

[ 4 ]KUO W H, YANG D L. Minimizing the total completion time in a single-machine scheduling problem with a time-dependent learning effect[J]. Eur J Oper Res, 2006,174(2):1184-1190.

[ 5 ]KOULAMAS C, KYPARISIS G J. Single-machine and two-machine flowshop scheduling with general learning function[J]. Eur J Oper Res, 2007,178(2):402-407.

[ 6 ]JIANG Zhongyi, CHEN Fangfang, WU Chunqing. Minimizing the maximum lateness in a single-machine scheduling problem with the normal time-dependent and job-dependent learning effect[J]. Appl Math Comput, 2012,218(18):9438-9441.

[ 7 ]JIANG Zhongyi, CHEN Fangfang, KANG Huiyan. Single-machine scheduling problems with actual time-dependent and job-dependent learning effect[J]. Eur J Oper Res, 2013,227(1):76-80.

[ 8 ]CHENG T C E, KUO W H, YANG D L. Scheduling with a position-weighted learning effect[J]. Optim Lett, 2014,8(1):293-306.

[ 9 ]LEE W C, WU C C. Some single-machine and m-machine flowshop scheduling problems with learning considerations[J]. Inf Sci, 2009,179(22):3885-3892.

[10]LEE W C, LAI P J, WU C C. Erratum to “Some single-machine and m-machine flowshop scheduling problems with learning considerations”[J]. Inf Sci, 2010,180(6):799-1073.

[11]KUO W H, YANG D L. Note on “Single-machine and flowshop scheduling with a general learning effect model” and “Some single-machine and m machine flowshop scheduling problems with learning considerations”[J]. Inf Sci, 2010,180(19):3814-3816.

[12]WANG Jibo, WU Yubin, JI Ping. A revision of some single-machine and m-machine flowshop scheduling problems with learning considerations[J]. Inf Sci, 2014,190:227-232.

[13]WU C C, LEE W C. Single-machine and flowshop scheduling with a general learning effect model[J]. Comput Ind Eng, 2009,56(4):1553-1558.

[14]ZHANG Xingong, YAN Guangle. Machine scheduling problems with a general learning effect[J]. Math Comput Model, 2010,51(1/2):84-90.

[15]WANG Jibo, WANG Mingzheng. A revision of machine scheduling problems with a general learning effect[J]. Math Comput Model, 2011,53(1/2):330-336.

[16]WANG Jibo, WANG Dan, WANG Liyan, et al. Single machine scheduling with exponential time-dependent learning effect and past-sequence-dependent setup times[J]. Comput Math Appl, 2009,57(1):9-16.

[17]WANG Jibo, SUN Linhui, SUN Linyan. Scheduling jobs with an exponential sum-of-actual-processing-time-based learning effect[J]. Comput Math Appl, 2010,60(9):2673-2678.

[18]BAI Jing, WANG Mingzheng, WANG Jibo. Single machine scheduling with a general exponential learning effect[J]. Appl Math Model, 2012,36(2):829-835.

[19]CHENG T C E, LAI P J, WU C C, et al. Single-machine scheduling with sum-of-logarithm-processing-times-based learning considerations[J]. Inf Sci, 2009,179(18):3127-3135.

[20]WANG Jibo, WANG Jianjun. Single machine scheduling with sum-of-logarithm-processing-times based and position based learning effects[J]. Optim Lett, 2014,8(3):971-982.

[21]WANG Jibo, SUN Linhui, SUN Linyan. Single machine scheduling with exponential sum-of-logarithm-processing-times based learning effect[J]. Appl Math Model, 2010,34(10):2813-2819.

[22]WANG Jibo, WANG Jianjun. Single-machine scheduling jobs with exponential learning functions[J]. Comput Ind Eng, 2011,60(4):755-759.

[23]MA Haifeng, SHAO Cheng, WANG Xueru. Single machine scheduling with exponential learning functions[J]. Optim Let, 2014,8(4):1273-1285.

[24]WANG Jibo, WANG Jianjun. Flowshop scheduling with a general exponential learning effect[J]. Comput Oper Res, 2014,43:292-308.

[25]YANG D L, CHENG T C E, KUO W H. Scheduling with a general learning effect[J]. Int J Adv Manuf Tech, 2013,67(1/2/3/4):217-229.

[26]JANIAK A, RUDEK R. A note on a makespan minimization problem with a multi-abilities learning effect[J]. Omega, 2010,38(3/4):213-217.

[27]GORDON V S, STRUSEVICH V A. Single machine scheduling and due date assignment with positionally dependent processing times[J]. Eur J Oper Res, 2009,198(1):57-62.

[28]ZHAO Chuanli, TANG Hengyong. A note on single machine scheduling and due date assignment with general position-dependent processing times[J]. Int J Prod Res, 2014,52(9):2807-2814.

[29]RUSTOGI K, STRUSEVICH V A. Simple Matching vs Linear Assignment in Scheduling Models with Positional Effects: A Critical Review[J]. Eur J Oper Res, 2012,222(3):393-407.

[30]ZHAO Chuanli, TANG Hengyong. Single machine scheduling problems with general position-dependent processing times and past-sequence-dependent delivery times[J]. J Appl Math Comput, 2014,45(1/2):259-274.

[31]WANG Jibo, WANG Mingzheng. Worst-case behavior of simple sequencing rules in flow shop scheduling with general position-dependent learning effects[J]. Ann Oper Res, 2011,191(1):155-169.

[32]SUN Linhui, CUI Kai, CHEN Juhong, et al. Research on permutation flow shop scheduling problems with general position-dependent learning effects[J]. Ann Oper Res, 2013,211(1):473-480.

[33]RUSTOGI K, STRUSEVICH V A. Single machine scheduling with general positional deterioration and rate-modifying maintenance[J]. Omega, 2012,40(6):791-804.

[34]RUSTOGI K, STRUSEVICH V A. Combining time and position dependent effects on a single machine subject to rate-modifying activities[J]. Omega, 2014,42(1):166-178.

[35]ZHAO Chuanli, YIN Yunqiang, CHENG T C E, et al. Single-machine scheduling and due date assignment with rejection and position-dependent processing times[J]. J Ind Manag Optim, 2014,10(3):691-700.

[36]YIN Yunqiang, XU Dehua, SUN Kaibiao, et al. Some scheduling problems with general position-dependent and time-dependent learning effects[J]. Inf Sci, 2009,179(14):2416-2425.

[37]WANG Jibo, LI Junxiang. Single machine past-sequence-dependent setup times scheduling with general position-dependent and time-dependent learning effects[J]. Appl Math Model, 2011,35(3):1388-1395.

[38]SHEN Lixin, WU Yubin. Single machine past-sequence-dependent delivery times scheduling with general position-dependent and time-dependent learning effects[J]. Appl Math Model, 2013,37(7):5444-5451.

[39]YIN Yunqiang, WU C C, WU W H, CHEN J C, et al. Single-machine group scheduling with a general learning effect[J]. Eur J Ind Eng, 2013,7(3):350-369.

[40]MOSHEIOV G. Proportionate flowshops with general position-dependent processing times[J]. Inform Process Lett, 2011,111(4):174-117.

[41]MOSHEIOV G. A note: Multi-machine scheduling with general position-based deterioration to minimize total load[J]. Int J Prod Econ, 2012,135(1):523-525.

[42]KUO W H, YANG D L. A short note on “Proportionate flowshops with general position-dependent processing times”[J]. Inform Process Lett, 2012,112(12):479-480.

[43]GERSTL E, MOSHEIOV G. Scheduling on parallel identical machines with job-rejection and position-dependent processing times[J]. Inform Process Lett, 2012,112(3):743-747.

[44]YIN Yunqiang, XU Dehua, WANG Jiayin. Some single-machine scheduling problems with past-sequence-dependent setup times and a general learning effect[J]. Int J Adv Manuf Tech, 2010,48(9/10/11/12):1123-1132.

[45]WANG Jibo, WANG Jianjun. Scheduling jobs with a general learning effect model[J]. Appl Math Model, 2013,37(4):2364-2373.

[46]XUE Pengfei, ZHANG Yulin, YU Xianyu. Single-machine scheduling with piece-rate maintenance and interval constrained position-dependent processing times[J]. Appl Math Comput, 2014,226:415-422.

[47]LEE W C. Single-machine scheduling with past-sequence-dependent setup times and general effects of deterioration and learning[J]. Optim Lett, 2014,8(1):135-144.

[48]WU C C, CHEN C J, WU W H, et al. Simulated annealing algorithms for the two-machine makespan flow shop scheduling with truncated learning consideration[J]. Int J Ind Eng, 2011,18(8):432-443.

[49]WU C C, YIN Yunqiang, WU W H, et al. Some polynomial solvable single-machine scheduling problems with a truncation sum-of-processing-times based learning effect[J]. Eur J Ind Eng, 2012,6(4):441-453.

[50]CHENG T C E, CHENG S R, WU W H, et al. A two-agent single-machine scheduling problem with truncated sum-of-processing-times-based learning considerations[J]. Comput Ind Eng, 2011,60(4):534-541.

[51]LI Lin, YANG Shengwu, WU Yubin, et al. Single machine scheduling jobs with a truncated sum-of-processing-times-based learning effect[J]. Int J Adv Manuf Tech, 2013,67(1/2/3/4):261-267.

[52]LAI K, HSU P H, TING P H, et al. A truncated sum of processing-times-based learning model for a two-machine flowshop scheduling problem[J]. Hum Factor Ergon Man, 2014,24(2):152-160.

[53]WU C C, YIN Yunqiang, CHENG S R. Single-machine and two-machine flow shop scheduling problems with truncated position-based learning functions[J]. J Oper Res Soc, 2013,64:147-156.

[54]LI D C, HSU P H, WU C C, et al. Two-machine flowshop scheduling with truncated learning to minimize the total completion time[J]. Comput Ind Eng, 2011,61(3):655-662.

[55]CHENG T C E, WU C C, CHEN J C, et al. Two-machine flowshop scheduling with a truncated learning function to minimize the makespan[J]. Int J Prod Eco, 2013,141(1):79-86.

[56]WANG Xiaoyuan, ZHOU Zhili, ZHANG Xi, et al. Several flow shop scheduling problems with truncated position-based learning effect[J]. Comput Oper Res, 2013,40(12):2906-2929.

[57]WANG Xueru, WANG Jibo, JIN Jian, et al. Single machine scheduling with truncated job-dependent learning effect[J]. Optim Lett, 2014,8(2):669-677.

[58]WU C C, YIN Yunqiang, CHENG S R. Some single-machine scheduling problems with a truncation learning effect[J]. Comput Ind Eng, 2011,60(4):790-795.

[59]WU C C, WU W H, HSU P H, et al. A two-machine flowshop scheduling problem with a truncated sum of processing-times-based learning function[J]. Appl Math Model, 2012,36(10):5001-5014.

[60]WANG Jibo, WANG Xiaoyuan, SUN Linhui, et al. Scheduling jobs with truncated exponential learning functions[J]. Optim Lett, 2013,7(8):1857-1873.

Recentadvanceinschedulingwithlearningeffects

ZHAOChuanli

(School of Mathematics and Systems Science, Shenyang Normal University, Shenyang 110034, China)

The concept of a learning effect on scheduling problems was first introduced by Biskup. The comprehensive survey paper on scheduling problems with learning effects was conducted by Biskup in 2008. Since then there has been an increasing interest in scheduling problems with learning effects. Therefore, besides the scheduling models mentioned in the survey of Biskup, there are several other new learning effect scheduling models in the literature. The goal of this paper was to provide a briefly review of the literature on the scheduling problems with learning effects in recent years. We mainly consider three models: 1) the actual processing time of jobs depend on specific position function; 2) the actual processing time of jobs depend on abstract position function; 3) the actual processing time of jobs depend on a truncated learning functions.

scheduling; learning effects; single machine; parallel machine; flow shop

2014-09-01。

遼寧省教育廳科學技術研究項目(L2014433)。

趙傳立(1958-),男,黑龍江泰來人,沈陽師范大學教授,博士,碩士研究生導師。

1673-5862(2014)04-0453-08

O223

: A

10.3969/ j.issn.1673-5862.2014.04.001

猜你喜歡
排序效應模型
一半模型
排序不等式
鈾對大型溞的急性毒性效應
懶馬效應
今日農業(2020年19期)2020-12-14 14:16:52
重要模型『一線三等角』
重尾非線性自回歸模型自加權M-估計的漸近分布
恐怖排序
節日排序
刻舟求劍
兒童繪本(2018年5期)2018-04-12 16:45:32
應變效應及其應用
主站蜘蛛池模板: 欧美在线伊人| 美女被操黄色视频网站| 国产国产人成免费视频77777| 香蕉色综合| 国产精品黄色片| 日韩欧美国产中文| 无码丝袜人妻| 国产精品亚洲片在线va| 日本妇乱子伦视频| 久久久久国色AV免费观看性色| 91免费国产在线观看尤物| 免费一看一级毛片| 国产91久久久久久| 狠狠色丁香婷婷| 国产精品不卡永久免费| 久久久久久久97| 欧美全免费aaaaaa特黄在线| 久久精品亚洲热综合一区二区| 思思99热精品在线| 国产爽妇精品| 国产精品久久久久久搜索| 97国内精品久久久久不卡| 亚洲最黄视频| 精品伊人久久久大香线蕉欧美| 五月天在线网站| 亚洲国产无码有码| 国产91视频免费| 在线欧美日韩| 青青草原国产一区二区| 永久成人无码激情视频免费| 日本黄色不卡视频| 99成人在线观看| 在线综合亚洲欧美网站| 国产凹凸视频在线观看| 99久久人妻精品免费二区| 国产h视频免费观看| 久久精品无码一区二区国产区| 国产免费福利网站| 精品成人一区二区| 曰韩人妻一区二区三区| 久草视频中文| 91蜜芽尤物福利在线观看| 亚洲美女视频一区| 日韩av电影一区二区三区四区| 999国产精品| 91色在线观看| 欧美另类视频一区二区三区| 亚洲中久无码永久在线观看软件 | 国产超碰在线观看| 午夜高清国产拍精品| 内射人妻无码色AV天堂| av色爱 天堂网| 日韩毛片免费观看| 免费看a级毛片| 久久综合激情网| 国产精品99一区不卡| 欧美精品v欧洲精品| 亚洲国产精品成人久久综合影院 | 亚洲AV一二三区无码AV蜜桃| 一区二区三区四区日韩| 免费a在线观看播放| 欧亚日韩Av| 四虎成人在线视频| 亚洲精品手机在线| 久久久久88色偷偷| 欧美国产综合色视频| 国产无遮挡猛进猛出免费软件| 亚洲AV无码久久天堂| 国产SUV精品一区二区| 亚洲AV无码久久天堂| 国产91高跟丝袜| 日韩毛片基地| 国产丝袜丝视频在线观看| 婷婷综合在线观看丁香| 久久综合九九亚洲一区| 中文国产成人久久精品小说| 欧美日韩在线第一页| 亚洲第一成年人网站| 日韩欧美国产综合| 午夜爽爽视频| 黄片在线永久| 看国产一级毛片|