999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

Generalized integration operators from Hardy spaces

2014-09-13 08:10:34QuHuiying
江蘇師范大學學報(自然科學版) 2014年1期

Qu Huiying

(School of Mathematics & Statistics,Jiangsu Normal University,Xuzhou 221116,Jiangsu,China)

0 Introduction

Let D denote the open unit disk of the complex plane C and H(D) the space of all analytic functions in D.

A positive continuous functionνon the interval [0,1) is called normal[1], if there areδ∈[0,1) anda,b, 0

is decreasing on [δ,1)

If we say that a functionν: D→[0,1) is normal, we also assume that it is radial, i.e.ν(z)=ν(|z|),z∈D.

For 0

For 0

Letμbe a weight, that is,μis a positive continuous function on D. The Bloch-type Bμconsists of allf∈H(D) such that

With the norm ‖f‖Bμ=|f(0)|+bμ(f), it becomes a Banach space. The little Bloch-type space Bμ,0is a subspace of Bμconsisting of thosef∈Bμ, such that

1 Preliminary material

Here we quote some auxiliary results which will be used in the proofs of the main results in this paper.

Lemma1[2]Forp>1, there exists a constantC(p) such that

Lemma2[16]Suppose that 0

for everyz∈D and all nonnegativen=0,1,2,….

Lemma4A closed setKin Bμ,0is compact if and only ifKis bounded and satisfies

The proof is similar to that of Lemma 1 in [17], so we omit it.

2 Boundedness and compactness of from Hp (0

(1)

ProofAssume that (1) holds. Then for everyz∈D andf∈Hp, by Lemma 2, we have

(2)

For a fixedω∈D, set

we get that

From Lemma 1, we have

Hence,

(3)

Forω∈D, by (3) we have

≤C<∞,

(4)

and from (3), we obtain that

≤C<∞.

(5)

Thus combining with (4), (5), we get the condition (1).

(6)

and

(7)

We assume that ‖fk‖p≤1. From (7), we have for anyε>0, there existsρ∈(0,1), whenρ<|φ(z)|<1, we have

(8)

≤(M+C)ε.

(9)

We can use the test functions

Note that

(10)

From (10) and |φ(zk)|→1, it follows that

and consequently (7) holds.

(11)

(12)

Then for anyf∈Hp, from Lemma 2, we obtain that

then (12) holds.

From (7), it follows that for everyε>0, there existsδ∈(0,1), such that

(13)

whenδ<|φ(z)|<1. Using (12), we see that there existsτ∈(0,1) such that

(14)

whenτ<|z|<1. Therefore whenτ<|z|<1 andδ<|φ(z)|<1, by (13), we have

(15)

On the other hand, whenτ<|z|<1 and |φ(z)|≤δ, by(14), we obtain

(16)

From (15) and (16), (11) holds. The proof is completed.

AcknowledgmentsThe author thanks the referee(s) for carefully reading the manuscript and making several useful suggestions for improvement. The author is also indebted to Professor Liu Yongmin, who gave him kind encouragement and useful instructions all through his writing.

:

[1] Shields A L,Williams D L.Bounded projections,duality,and multipliers in space of analytic functions[J].Trans Amer Math Soc,1971,162:287.

[2] Duren P L.Theory ofHPspaces[M].New York:Academic Press,1970.

[3] Garnett J B.Bounded analytic functions[M].New York:Springer,2007.

[4] Zhu K.Bloch type spaces of analytic functions[J].Rochy Mount J Math,1993,23(3):1143.

[5] Sharma S D,Sharma A.Generalized integration operators from Bloch type space to weighted BMOA spaces[J].Demonstr Math,2011,44(2):373.

[7] Yu Yanyan.Volterra-type composition operators from logarithmic Bloch spaces into Bloch-type spaces[J].J Xuzhou Norm Univ:Nat Sci Ed,2009,27(3):14.

[9] Yang Weifeng.Composition operators fromF(p,q,s) spaces to thenth weighted-types paces on the unit disc[J].Appl Math Comput,2011,218(4):1443.

[10] Zhu Xiangling.Generalized composition operators from generalized weighted Bergman spaces to Bloch type spaces[J].J Korean Math Soc,2009,46(6):1219.

[11] Ohno S.Products of composition and differentiation between Hardy spaces[J].Bull Aus tral Math Soc,2006,73(2):235.

[12] Zhu Xiangling.Products of differentiation,composition and multiplication from Bergman typespaces to Bers type spaces[J].Integr Transf Spec Funct,2007,18(3/4):223.

[13] Liu Xiaoman,Yu Yanyan.The product of differentiation operator and multiplication operator fromH∞to Zygmund spaces[J].J Xuzhou Norm Univ:Nat Sci Ed,2011,29(1):37.

[14] Zhu Xiangling.An integral-type opreator fromH∞to Zygmund-type spaces[J].Bull Malays Math Sci Soc,2012,35(3):679.

[15] He Zhonghua,Gao Guangfu.Generalized integration operators between Bloch-type spaces andF(p,q,s) spaces[J].Taiwanese J Math,2013,17(4):2658.

[16] Ye Shanli,Zhou Zhonghua.Weighted composition operators from Hardy to Zygmund type spaces[J].Abstr Appl Anal,2013,2013(10):286.

[17] Madigan K,Matheson A.Compact composition operator on the Bloch space[J].Trans Amer Math Soc,1995,347(7):2679.


登錄APP查看全文

主站蜘蛛池模板: 亚洲中文久久精品无玛| 四虎成人免费毛片| 久久精品亚洲热综合一区二区| 在线免费无码视频| 成人在线不卡视频| 中文字幕 91| 国产无套粉嫩白浆| 国产二级毛片| 久久精品国产精品国产一区| 国产成人亚洲精品色欲AV | 免费人成视网站在线不卡| 伊人成人在线| 亚洲一区二区三区香蕉| 欧美成人免费午夜全| 在线观看无码av五月花| 国产欧美日韩资源在线观看| 亚洲成人一区二区三区| 久久一日本道色综合久久 | 亚洲日本中文字幕乱码中文 | 欧美一区二区三区不卡免费| AV无码无在线观看免费| 色欲色欲久久综合网| 四虎成人在线视频| 大陆精大陆国产国语精品1024| 国产精品主播| 婷婷六月天激情| 99久久精品视香蕉蕉| 国产一区二区三区日韩精品| 亚洲AV成人一区二区三区AV| 91热爆在线| 亚洲精品va| 小蝌蚪亚洲精品国产| 谁有在线观看日韩亚洲最新视频| 色爽网免费视频| 欧美成人精品一区二区| 亚洲三级a| www.国产福利| 久久精品波多野结衣| 国产老女人精品免费视频| 国产特一级毛片| 国产a v无码专区亚洲av| 久无码久无码av无码| 国产精品第5页| 沈阳少妇高潮在线| 91精品国产丝袜| 成年人免费国产视频| 国产精品久久精品| 怡红院美国分院一区二区| 精品欧美一区二区三区在线| 久热中文字幕在线观看| 亚洲成人一区二区三区| 热re99久久精品国99热| 亚洲大尺度在线| 日韩视频福利| 久久一本精品久久久ー99| 69av在线| 四虎精品黑人视频| 日韩一区二区三免费高清| 特级毛片免费视频| 亚洲一区二区三区国产精品| 国产精品吹潮在线观看中文| 欧美激情福利| 久久久久88色偷偷| 亚洲天堂免费| 亚洲黄网在线| 男女性色大片免费网站| 在线看AV天堂| 亚洲天堂网2014| 国产精品综合久久久| 国产高清精品在线91| 91青青草视频在线观看的| 国产精品lululu在线观看 | 伊大人香蕉久久网欧美| 久久一色本道亚洲| 伊人国产无码高清视频| 国产一区二区影院| 国产欧美日韩va另类在线播放 | 伊人五月丁香综合AⅤ| 国产日本一线在线观看免费| 国产在线视频自拍| 午夜高清国产拍精品| 超级碰免费视频91|