全志勇++吳奇鋒
摘 要 利用同胚映射原理、線性矩陣不等式和構造的Lyapunov泛函研究了一類CohenGrossberg神經網絡平衡點的全局漸近穩定性,優化了現有文獻中關于全局漸近穩定性的判據.
關鍵詞 廣義CohenGrossberg神經網絡;全局漸近穩定性;線性矩陣不等式;同胚
中圖分類號 O175.1 文獻標識碼 A
Global Asymptotic Stability of Generalized
CohenGrossberg Neural Networks with Delays
QUAN Zhiyong, WU Qifeng
(College of Mathematics and Econometrics, Hunan University,Changsha, Hunan 410082, China)
Abstract By means of Homeomorphism theory, linear matrix inequality and constructing a Lyapunov functional, we studied the global asymptotic stability of the equilibrium point for a class of CohenGrossberg neural networks. In our results, the criteria for the global asymptotical stability are better than that in existing papers.
Key words generalized CohenGrossberg neural networks; global asymptotic stability; linear matrix inequality; Homeomorphism
1 引 言
由于CohenGrossberg神經網絡(CGNN)在并行計算、聯想記憶,特別是最優化計算等領域的重要作用,近年來,有或無時滯的 CGNN特別是一維CGNN的穩定性問題已為國內外學者所廣泛關注和研究,各種有趣的結果也被發表[1-6].然而,只有幾個作者討論了二維CGNN模型的穩定性問題[7-10].在許多應用中,由于二維CGNN考慮兩個神經網絡之間的相互作用,因此對二維CGNN穩定性的研究比對一維CGNN穩定性的研究更有趣.這促使我們研究二維CGNN的穩定性.
本文將用不同于文獻[7]中的方法,即通過應用同胚映射原理、不等式、線性矩陣不等式和構造的Lyapunov泛函,對文獻[7]中具有多時滯的廣義二維CGNN的全局穩定性繼續討論,得到了全局漸近穩定性的新結果.當把網絡降低為一維CGNN時,獲得的的結果不同于現有文獻中的結果.在本文的結果中,去除了對行為函數在文獻[1-3]中的單調性假設和文獻[4,5]中的可微性假設,對激勵函數去除了在文獻[1-5]中的有界性假設和文獻[2-5]中的單調性假設.同討論的二維CGNN相比,在所得結果中,也去除了文獻[10]中對行為函數的單調性和可微性假設及對激勵函數的單調性假設和逆Lipschitz條件.由于用于研究全局漸近穩定性的方法不同于文獻[7,8]中所用方法,因此關于全局漸近穩定性的結果也不同于文獻[7,8]中所得到的結果.也就是說,在本文的結果中,文獻[7,8]中對行為函數的Lipschitz條件和文獻[8]中對行為函數的反函數的Lipschitz條件為兩個不等式所替代,而參數限制條件為兩個線性矩陣不等式所替代.因此得到了CGNN全局漸近穩定性的新結果.
2 模型及假設
5 結 論
本文首先利用同胚映射原理討論了具多時滯廣義CohenGrossberg神經網絡平衡點的存在性和唯一性,繼而應用平衡點的存在性結果、線性矩陣不等式和構造的Lyapunov泛函研究了上述系統的全局漸近穩定性,所得結果優化了現有文獻中關于全局漸近穩定性的判據,而且所給判據是有效而實用的.
參考文獻
[1] S ARIK, Z ORMAN. Global stability analysis of CohenGrossberg neural networks with time varying delays [J]. Phys. Lett. A,2005,341(5-6):410-421.
[2] B T CUI, W WU. Global exponential stability of CohenGrossberg neural networks with distributed delays [J]. Neurocomputing,2008,72(1-3):386-391.
[3] Z ORMAN, S ARIK. New results for global stability of CohenGrossberg neural networks with multiple time delays [J]. Neurocomputing,2008,71(16-18):3053-3063.
[4] W WU, B T CUI, X Y LOU. Some criteria for asymptotic stability of CohenGrossberg neural networks with time varying delays [J]. Neurocomputing,2007,70(4-6):1085-1088.
[5] J FENG, S XU. New criteria on global robust stability of CohenGrossberg neural networks with time varying delays [J]. Neurocomputing,2008,72(1-3):445-457.endprint
[6] Z S WANG, H G ZHANG, W YU. Robust stability criteria for interval CohenGrossberg neural networks with time varying delay [J]. Neurocomputing, 2009,72(4-6):1105-1110.
[7] Z Q ZHANG, D M ZHOU. Global robust exponential stability for secondorder CohenGrossberg neural networks with multiple delays [J]. Neurocomputing, 2009,73(1-3):213-218.
[8] H J JIANG, J D CAO. BAMtype CohenGrossberg neural networks with time delays [J]. Mathematical and Computer Modelling, 2008,47(1-2):92-103.
[9] H Y ZHAO, L WANG. Hopf bifurcation in CohenGrossberg neural network with distributed delays [J]. Nonlinear Analysis: Real World Applications,2007,8(1):73-89.
[10]X B NIE, J D CAO. Stability analysis for the generalized CohenGrossberg neural networks with inverse Lipschitz neuron activations [J]. Computer and Math Appli, 2009, 57(9):1522-1536.
[11]M FORTI, A TESI. New conditions for global stability of neural networks with application to linear and quadratic programming problems [J]. IEEE Trans Circuit System I, 1995,42(7):345-366.endprint
[6] Z S WANG, H G ZHANG, W YU. Robust stability criteria for interval CohenGrossberg neural networks with time varying delay [J]. Neurocomputing, 2009,72(4-6):1105-1110.
[7] Z Q ZHANG, D M ZHOU. Global robust exponential stability for secondorder CohenGrossberg neural networks with multiple delays [J]. Neurocomputing, 2009,73(1-3):213-218.
[8] H J JIANG, J D CAO. BAMtype CohenGrossberg neural networks with time delays [J]. Mathematical and Computer Modelling, 2008,47(1-2):92-103.
[9] H Y ZHAO, L WANG. Hopf bifurcation in CohenGrossberg neural network with distributed delays [J]. Nonlinear Analysis: Real World Applications,2007,8(1):73-89.
[10]X B NIE, J D CAO. Stability analysis for the generalized CohenGrossberg neural networks with inverse Lipschitz neuron activations [J]. Computer and Math Appli, 2009, 57(9):1522-1536.
[11]M FORTI, A TESI. New conditions for global stability of neural networks with application to linear and quadratic programming problems [J]. IEEE Trans Circuit System I, 1995,42(7):345-366.endprint
[6] Z S WANG, H G ZHANG, W YU. Robust stability criteria for interval CohenGrossberg neural networks with time varying delay [J]. Neurocomputing, 2009,72(4-6):1105-1110.
[7] Z Q ZHANG, D M ZHOU. Global robust exponential stability for secondorder CohenGrossberg neural networks with multiple delays [J]. Neurocomputing, 2009,73(1-3):213-218.
[8] H J JIANG, J D CAO. BAMtype CohenGrossberg neural networks with time delays [J]. Mathematical and Computer Modelling, 2008,47(1-2):92-103.
[9] H Y ZHAO, L WANG. Hopf bifurcation in CohenGrossberg neural network with distributed delays [J]. Nonlinear Analysis: Real World Applications,2007,8(1):73-89.
[10]X B NIE, J D CAO. Stability analysis for the generalized CohenGrossberg neural networks with inverse Lipschitz neuron activations [J]. Computer and Math Appli, 2009, 57(9):1522-1536.
[11]M FORTI, A TESI. New conditions for global stability of neural networks with application to linear and quadratic programming problems [J]. IEEE Trans Circuit System I, 1995,42(7):345-366.endprint