阮瑞典
【摘要】根據(jù)篩法和素?cái)?shù)的平均分布密度規(guī)律 [1]的解析推導(dǎo)原理,并將其應(yīng)用到對(duì)一些類似的規(guī)律性的素?cái)?shù)問(wèn)題的解析研究中[2],結(jié)果,我們很便捷地解析推導(dǎo)證明了孿生素?cái)?shù)猜想、哥德巴赫猜想等幾個(gè)素?cái)?shù)問(wèn)題,本文簡(jiǎn)要將解析推導(dǎo)得出的幾個(gè)證明結(jié)論(函數(shù)式)陳述以供探討研究.
【關(guān)鍵詞】素?cái)?shù);哥德巴赫猜想;孿生素?cái)?shù)猜想;素?cái)?shù)分布
一、引言
在文獻(xiàn)[1]中,詳細(xì)地解析推導(dǎo)得出了一種篩選素?cái)?shù)的方法——分區(qū)域段公倍數(shù)篩選法(即:印花原理),以此法為基礎(chǔ),一步步分析推導(dǎo)得出了一個(gè)以函數(shù)形式表示的素?cái)?shù)在自然數(shù)數(shù)列中任一點(diǎn)x之前(包括x點(diǎn))的整個(gè)區(qū)域上的素?cái)?shù)的平均分布密度規(guī)律,其函數(shù)表達(dá)式為:
我們?cè)趯?duì)若干類似的規(guī)律性的素?cái)?shù)問(wèn)題的研究中(參見(jiàn)文獻(xiàn)[2]),仍以分區(qū)域段公倍數(shù)篩選法(即:印花原理)為基礎(chǔ),結(jié)果很順利便捷地解析證明了哥德巴赫猜想、孿生素?cái)?shù)猜想等幾個(gè)素?cái)?shù)問(wèn)題,本文現(xiàn)分別簡(jiǎn)單將這幾個(gè)素?cái)?shù)問(wèn)題的證明函數(shù)結(jié)論表述如下.
二、孿生素?cái)?shù)猜想
定理 自然數(shù)數(shù)集中存在無(wú)窮多個(gè)素?cái)?shù)P,使得P+2也是素?cái)?shù).
對(duì)孿生素?cái)?shù)分布規(guī)律的解析篩選與對(duì)素?cái)?shù)分布規(guī)律的解析篩選方法基本相同(略),請(qǐng)參見(jiàn)文獻(xiàn)[2].
最后解析推導(dǎo)結(jié)果,我們也仿素?cái)?shù)的平均密度分布規(guī)律函數(shù)表達(dá)式,最終也用一個(gè)確切的函數(shù)關(guān)系式來(lái)表示孿生素?cái)?shù)在自然數(shù)數(shù)列中任一點(diǎn)x之前(包括x點(diǎn))的平均分布密度規(guī)律,即: