999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

高中數(shù)學(xué)立體幾何問(wèn)題的解析方法探討

2014-04-29 14:34:00史洪波
課程教育研究 2014年2期
關(guān)鍵詞:高中數(shù)學(xué)

史洪波

【摘要】在高中階段,我們不可避免的會(huì)學(xué)習(xí)立體幾何,立體幾何作為我們高考中比較重要的一門(mén)學(xué)科。它與向量運(yùn)算函數(shù)、解析幾何和三角運(yùn)算有著非常緊密的聯(lián)系,同時(shí)它也是近年高中大大小小考試的新寵,但是它也是高中時(shí)期的一個(gè)難點(diǎn),空間解析幾何這門(mén)學(xué)科中的線面關(guān)系和向量運(yùn)算是立體幾何問(wèn)題解決的一個(gè)有利途徑。

【關(guān)鍵詞】高中數(shù)學(xué) 立體幾何 解析方法

【中圖分類號(hào)】G633.63 【文獻(xiàn)標(biāo)識(shí)碼】A 【文章編號(hào)】2095-3089(2014)02-0150-02

夾角、距離、垂直、平行等是立體幾何中需要解決的核心問(wèn)題。一般的解決立體幾何方法主要根據(jù)定理和概念、憑借各種幾何圖形的不同分割、利用邏輯思維對(duì)空間的理解作為考查點(diǎn),需要考生判斷它們的潛在意義。關(guān)系、指示代詞、一詞多義也是各類考試中常客。面對(duì)這類問(wèn)題我們要特別注意關(guān)系和指示代詞的潛在意義。如碰到結(jié)構(gòu)復(fù)雜的句子,那我們更該注意其中的指示代詞。

1.利用函數(shù)思想解決立體幾何問(wèn)題

所謂函數(shù)的思想,就是根據(jù)變化和運(yùn)動(dòng)的觀點(diǎn),鉆研和分析立體幾何數(shù)學(xué)中的數(shù)量關(guān)系,建立函數(shù)之間的關(guān)系或是構(gòu)造函數(shù),根據(jù)函數(shù)等價(jià)的圖形和性質(zhì)去分析問(wèn)題、轉(zhuǎn)化為待求問(wèn)題,進(jìn)而解決問(wèn)題。函數(shù)的思想其實(shí)就是對(duì)函數(shù)基本概念的理解,用于指導(dǎo)學(xué)生解題,經(jīng)常利用函數(shù)的觀點(diǎn)觀察、分析和解決問(wèn)題,會(huì)對(duì)學(xué)生遇到的幾何問(wèn)題有很大的提升,使他們的邏輯思維能力得到鍛煉;對(duì)于高中數(shù)學(xué)而言,函數(shù)思想在幾何解析過(guò)程中的作用主要體現(xiàn)在以下兩個(gè)方面:一是在幾何問(wèn)題的分析中,通過(guò)建立函數(shù)之間的關(guān)系式或構(gòu)造中間函數(shù),把待解決問(wèn)題轉(zhuǎn)化為分析相關(guān)函數(shù)的有關(guān)性質(zhì),達(dá)到化繁為簡(jiǎn)的目的;二是利用相關(guān)函數(shù)的性質(zhì),解函數(shù)值、證明不等式、解方程以及分析相關(guān)參數(shù)的取值范圍等幾何或是數(shù)學(xué)問(wèn)題。

例題分析:如圖, PA垂直于圓O所在平面,AB是圓O的直徑,C是圓周上任一點(diǎn),設(shè)∠BAC=?琢,PA=AB=2r,求異面直線PB和AC的距離。

分析:異面直線AC和PB之間的距離可以看成求直線PB上任意一點(diǎn)到AC的距離的最小值,從而設(shè)定變量,建立目標(biāo)函數(shù)進(jìn)而求目標(biāo)函數(shù)的最小值。

解析:在PB上任取一點(diǎn)M,作MD上AC于D,MH上AIB于H,

設(shè)MH=x,則MH⊥平面ABC,AC⊥HD,

MD2=x2+[(2r-x)sin ?琢]2

=(sin2 ?琢+1)x2-4rsin2?琢x+4r2sin2?琢

=(sin2?琢+1)[x-2rsin2?琢/1+sin2?琢]2+4rsin2?琢x/1+sin2?琢

即當(dāng)x=2rsin2?琢/1+sin2?琢?xí)r,MD取最小值,■為兩異面直線的距離。

對(duì)以上題型的分析:本題的思路是將立體幾何中的“兩條異面直線之間的距離”轉(zhuǎn)化成“求兩條異面直線上兩點(diǎn)之間距離的最小值”,并設(shè)定匹配的變量將幾何問(wèn)題變成代數(shù)中的“函數(shù)問(wèn)題”。一般而言,針對(duì)求最小值、最大值的實(shí)際問(wèn)題,首先應(yīng)該將文字解釋轉(zhuǎn)化為數(shù)學(xué)術(shù)語(yǔ)后,然后再建立相應(yīng)的數(shù)學(xué)模型和對(duì)用的函數(shù)關(guān)系式,最后利用函數(shù)的性質(zhì)、重要的不等式和相關(guān)代數(shù)和幾何知識(shí)進(jìn)行解答。

2.利用空間幾何思想解決立體幾何中平行與垂直的問(wèn)題

空間幾何圖形的平行關(guān)系有線與面平行、線與線平行、面與面平行。可以分別轉(zhuǎn)化為向量平行、向量共面和垂直問(wèn)題來(lái)解決。

設(shè)平面?仔的法向量為■,直線?謀的方向向量為■,兩直線 ?謀m和?謀n的方向向量為■和■。平面?仔1和?仔2的法向量為■和■,則上述問(wèn)題的向量之間的關(guān)系可以表示為:

?謀m//?謀n?圳■//■?圳k■,k∈R(線線平行);

?謀//?仔?圳■⊥■=0,或■與?仔內(nèi)的兩個(gè)相交向量■、■共面。(線面平行);

?仔1//?仔2?圳■//■?圳m2=k■,k∈R(面面平行);

空間幾何圖形的垂直關(guān)系有線與面垂直、線與線垂直、面與面垂直。我們可以分別把它們轉(zhuǎn)化為向量垂直和向量平行問(wèn)題來(lái)解決。

?謀⊥?仔?圳■//■?圳■=k■,k∈R,且■與?仔內(nèi)的兩個(gè)相交向量■、■垂直。即■·■=0,■·■=0(線面垂直);

?謀m⊥?謀n?圳■⊥■?圳■·■=0(線線垂直);

?仔1⊥?仔2?圳■⊥■?圳■·■=0(面面垂直)。

3.利用空間幾何思想來(lái)分析空間圖形間的距離和夾角

二面角的平面角、立體幾何中的異面直線之間的夾角、直線與相應(yīng)平面的夾角的確立在向量運(yùn)算中我們可以按照下面的方法來(lái)分析。

兩直線?謀m和?謀n的方向向量■和■的夾角(一般是指銳角)叫做兩條直線的夾角。根據(jù)公式cos?茲=cos■,■=■確定。

設(shè)直線?謀與它在平面?仔上的投影夾角為?茲。因?yàn)椋科?■-■,■,所以sin?茲=cos■,■=■。

設(shè)兩平面的夾角為?茲,兩平面?仔1和?仔2的法向量為■和■當(dāng)0≤■,■≤■時(shí),兩平面的夾角為■,■,當(dāng)■<■,■≤?仔時(shí),兩平面的夾角為?仔-■,■。所以cos?茲=cos■,■=■。

平面外一點(diǎn)到平面的距離:設(shè)P為平面?仔外一點(diǎn),■為的?仔法向量,A為平面內(nèi)任一點(diǎn),■與?仔的夾角為d=■Sin?漬=■cos■,■=■。則d=■Sin?漬=■cos■,■=■。即■在■上投影的絕對(duì)值。

異面直線問(wèn)的距離:設(shè)異面兩直線?謀m和d=■的方向向量為■和■。為與?謀m、?謀n垂線共線的向量。由■⊥■1?圳■·■1=0,■⊥■2?圳■·■2=0。解得■。

在?謀m和?謀n上分別取點(diǎn)A和B。則■在■上投影的絕對(duì)值即為所求即d=■。

4.利用空間幾何思想來(lái)解決立體幾何中動(dòng)態(tài)的問(wèn)題

在我們遇到的立體幾何問(wèn)題中,除了一成不變的面與面、線與面、線與線間的垂直、平行、距離、夾角間的常見(jiàn)問(wèn)題外,偶爾還會(huì)遇到很多關(guān)于“動(dòng)態(tài)”的線、點(diǎn)、面這些元素的問(wèn)題。相對(duì)那些常規(guī)問(wèn)題,這些問(wèn)題經(jīng)常更具有挑戰(zhàn)性和靈活性。利用空間幾何思想我們可以使這些看上去無(wú)法入手的立體幾何復(fù)雜的問(wèn)題迎刃而解。

5.總結(jié)

根據(jù)以上分析可以看出,我們談?wù)摰挠每臻g解析幾何的思想即向量方法來(lái)處理立體幾何問(wèn)題是非常方便和有效的。其中關(guān)鍵的部分是根據(jù)幾何圖形中的平行、垂直、相交等關(guān)系,建立合適的空間直角坐標(biāo)系,可以利用立體幾何圖像中所涉及的東西表示向量,從而使立體幾何問(wèn)題中的線與線之間的關(guān)系和線與面之間的關(guān)系,以及距離和夾角問(wèn)題適當(dāng)?shù)霓D(zhuǎn)化為向量間的相應(yīng)關(guān)系處理,最后再把向量之間的運(yùn)算結(jié)果來(lái)表示相應(yīng)的立體幾何問(wèn)題。

參考文獻(xiàn):

[1]李銳.現(xiàn)代教育技術(shù)與空間解析幾何教學(xué)整合的研究.中國(guó)電力教育,2010,(34):91-92.

[2]周濤.向量在立體幾何中的應(yīng)用[J].中國(guó)校外教育,2012,(10):129-130.

[3]杜志建.金考卷特快專遞[M].烏魯木齊:新疆青少年出版社,2012.

猜你喜歡
高中數(shù)學(xué)
對(duì)提升高中數(shù)學(xué)課堂教學(xué)效率策略的思考
高中數(shù)學(xué)邏輯思維能力的培養(yǎng)
科技視界(2016年21期)2016-10-17 19:06:43
淺析如何構(gòu)建高中數(shù)學(xué)高效課堂
考試周刊(2016年79期)2016-10-13 22:19:12
高中數(shù)學(xué)一元二次含參不等式的解法探討
考試周刊(2016年79期)2016-10-13 22:17:05
高中數(shù)學(xué)新課程中函數(shù)的教學(xué)設(shè)計(jì)研究
考試周刊(2016年79期)2016-10-13 22:14:57
試卷講解有效實(shí)施的冷思考和研究
考試周刊(2016年79期)2016-10-13 21:34:57
高中數(shù)學(xué)教學(xué)中的“情景—問(wèn)題”教學(xué)模式研究
考試周刊(2016年77期)2016-10-09 11:01:00
分層教學(xué)在高中數(shù)學(xué)中的研究
考試周刊(2016年77期)2016-10-09 10:59:20
高中數(shù)學(xué)數(shù)列教學(xué)中的策略選取研究
考試周刊(2016年77期)2016-10-09 10:58:31
調(diào)查分析高中數(shù)學(xué)課程算法教學(xué)現(xiàn)狀及策略
考試周刊(2016年76期)2016-10-09 08:54:54
主站蜘蛛池模板: 999福利激情视频| 精品人妻AV区| 国产69精品久久久久孕妇大杂乱 | 亚洲第一精品福利| 亚洲欧美不卡| 国产精品三级av及在线观看| 又爽又大又黄a级毛片在线视频| 啪啪啪亚洲无码| 中文字幕 91| 毛片一级在线| 丝袜亚洲综合| 欧美a在线看| 波多野结衣第一页| 毛片网站观看| 黄色网站在线观看无码| 国产视频大全| 国产美女丝袜高潮| 996免费视频国产在线播放| 97青青青国产在线播放| 老司机精品久久| 免费人成视频在线观看网站| 亚洲自偷自拍另类小说| 免费日韩在线视频| 毛片基地视频| 97亚洲色综久久精品| 制服丝袜 91视频| 东京热高清无码精品| a级毛片毛片免费观看久潮| 92午夜福利影院一区二区三区| 国产免费羞羞视频| 成人在线观看不卡| 高清色本在线www| 欧美啪啪一区| 国产精品熟女亚洲AV麻豆| 国产精品对白刺激| 亚洲欧美另类中文字幕| 伊人国产无码高清视频| 国产欧美视频综合二区| AV不卡在线永久免费观看| 成人精品免费视频| 最新国产成人剧情在线播放| 韩日免费小视频| 中国精品自拍| 久久人人97超碰人人澡爱香蕉| 午夜日b视频| 久久精品一卡日本电影| 国产呦视频免费视频在线观看| 午夜成人在线视频| 欧美日本在线| 最新精品久久精品| 日韩毛片视频| 亚洲欧州色色免费AV| 亚洲色无码专线精品观看| 手机在线看片不卡中文字幕| 亚洲成a人片在线观看88| 亚洲专区一区二区在线观看| 四虎精品免费久久| A级全黄试看30分钟小视频| 欧美成人精品欧美一级乱黄| 国产屁屁影院| 欧美a√在线| 5388国产亚洲欧美在线观看| 国产99欧美精品久久精品久久| 二级特黄绝大片免费视频大片| 日韩av在线直播| 秋霞国产在线| 久久综合伊人77777| 国产精品无码翘臀在线看纯欲| 亚洲高清在线播放| www亚洲精品| 国产成人一区| 国产精品永久免费嫩草研究院| 免费女人18毛片a级毛片视频| 亚洲另类第一页| 久久国产精品夜色| 婷婷伊人五月| 亚洲最新网址| 最新日韩AV网址在线观看| 亚洲精品国产首次亮相| 国产伦精品一区二区三区视频优播| 国产一区二区免费播放| 国产精品女同一区三区五区|