999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

Robust exponential stabilityanalysis of discrete-time switched Hopfield neural networks with time-varyingdelay

2013-11-01 07:17:20
關鍵詞:系統

(School of Mathematics and System Science,Shenyang Normal University,Shenyang 110034,China)

0 Introduction

Switched systems are an important class of hybrid dynamical systems which are composed of a family of continuous-time or discrete-time subsystems and a rule that orchestrates the switching among them.Lots of valuable results in the stability analysis and stabilization for linear or nonlinear hybrid and switched systems were established;see[1-3]and the references cited therein.Recently,the switched Hopfield neural networks,whose individual subsystems are a set of Hopfield neural networks,have found applications in the field of combinatorial optimization,knowledge acquisition and pattern recognition[4-10].This motivated many researchers to study the stability issues of switched neural networks[11-15].In [14],the robust exponential stability analysis of discrete-time switched Hopfield neural networks with time delay is considered.However,the case of time-varying delay has not been available in the literature so far,which motivates us to carry out the present study.

1 Problem formulation and preliminaries

In this section,we will consider the model of discrete-time switched Hopfield neural networks with time-varying delay and uncertainty:

Whereσ(k)is a switching signal which takes its values in the finite setN={1,2,…,n}.u(k)=(u1(k),u2(k),…,un(k))T∈Rnis the state vector of the neurons,A=diag{a1,a2,…,an}are the state feedback coefficient matrix;B=(bij)n×nis the connection weight matrix.f(·)=(f(·),f(·),…,f(·))T∈Rnis the neuron activation function.The positive integerd(k)denotes the time-varying discrete delay satisfying

The initial condition associated with model(1)is given by

Throughout this paper,we have the following assumptions

1)Forj={1,2,…,n},the neuron activation functionsfj(·)are continuous and bounded.

3)The parameter uncertaintiesΔAi(k),ΔBi(k)are unknown but norm bounded,and satisfy

WhereFi(k)is an unknown real time-varying matrix and satisfies the following bound condition:

4)The switching sequence is defined asζ= {xk0;(i0,k0),(i1,k1),…,(im,km),…},whenk∈[k>m,km+1),theimth subsystem is activated and the states of system (1)do not jump when the switch occurs.

For our development,we need the following definitions and lemmas.

Definition 1[14]The discrete-time switched Hopfield neural network (1)is said to be robustly exponentially stable if its solution satisfies

for any initial condition (k0,φ)∈R+×Cnand parameter uncertainty satisfying (5).‖φ‖L=supk0-d≤l≤k0‖φ(l)‖,K>0is the coefficient,andλ>1is the decay rate.

Definition 2[16]For anyk≥k0and any switching signalσ(s),k0≤s≤k,letNσdenote the switching numbers ofσ(s)during the interval[k0,k].If there existN0≥0andTa>0such thatNσ(k0,k)≤N0+(k-k0)/Ta,thenTaandN0are called the average dwell time and the chatter bound,respectively.

Without loss of generality,in this paper,we assumeN0=0for simplicity.

Lemma 1[3]For any constant matrixW=WT≥0,two positive integersrandr0satisfyingr≥r0≥1,the following inequality

Lemma 2[17]LetA,D,MandWbe real matrices which have appropriate dimensions such thatW>0andFTF≤I.For any scalarε>0such thatW-εDDT>0,then we have the following inequality:(A+DFM)TW-1(A+DFM)≤AT(W-εDDT)-1A+ε-1MTM.(8)

2 Main results

In this section,the robust exponential stability criteria for the discrete-time switched Hopfield neural networks(1)will be presented using an average dwell time method.Firstly,consider the ithsubsystem ,that is,whenσ(k)=i,

Now we give the following theorem,which plays an important role in the derivation of the robust exponential stability condition for system (1).

Theorem 1Under the assumptions(ⅰ)-(ⅳ),for given scalars 0<α<1,μ≥1,system (1)is robustly exponentially stable,if there exist diagonal matricesΛ=diag{λ1,λ2,…,λn}>0,and positive matricesPi>0,Qi>0,Zi>0,and scalarsε1i>0,ε2i>0,i∈N,such that the following inequalities hold:

Whicheidenotes the unit column vector having“1”element on itsith row and zeros elsewhere.Namely,

and

According to Definition 1,system (1)is robustly exponentially stable.This completes the proof of Theorem 1.

3 Illustrative examples

Example Consider the discrete-time switched Hopfield neural networks (1)with the following parameters:

E21=E22=E23=diag{0.03,0.04,-0.05},Fi(k)=diag{sin(k),sin(k),sin(k)},i=1,2,3,The activation functions are taken as

Fig.1 State of response of system (7)with(34)

Choosingα=0.4,μ=1.2,d=1.5,Solving the conditions(11),(12),(13),it is found that the linear matrix inequalities are feasible.We obtain that=0.3569,on the basis of(14),we have that=0.4is satisfied.

On the basis of (25),there are three subsystems in the switched system (1).In the simulation,let k0=0,d(k)=1.5*sin(k).Take the switching sequence as 321321321…….It can be seen from the switched sequence that Ta=0.5.

Choosing the initial value as φ(s)=[8 6 -7]T,we then obtain Fig.1,which depicts the trajectories of the system state.

4 Conclusions

This paper is concerned with the robust exponential stability problem for discrete-time switched Hopfield neural networks with time-varying delay and uncertainty.A numerical example is provided to demonstrate the potential and effectiveness of the results obtained.

[1]LIBERZON D,MORSE A S.Basic problems in stability and design of switched systems[J].IEEE Control Systems Magazine,1999,19(5):59-70.

[2]YE H,MICKEL N,HOU L.Stability theory for hybrid dynamical systems[J].IEEE Trans Autom Control,1998,43(4):461-474.

[3]李巖,劉玉忠.具有時變時滯不確定切換系統的魯棒鎮定[J].沈陽師范大學學報:自然科學版,2011,29(2):142-145.

[4]LI Hongyi,WANG Chuan,SHI Peng,et al.New passivity results for uncertain discrete-time stochastic neural networks with mixed time delays[J].Neurocomputing,2010,73(16/17/18),3291-3299.

[5]LIU Yurong,WANG Zidong,LIU Xiaohui.Asymptotic stability for neural networks with mixed time delays:the discrete-time case[J].Neural Netw,2009,22(1),67-74.

[6]WU Zhengguang,SHI Peng,SU Hongye.Delay-dependent exponential stability analysis for discrete-time switched neural networks with time-varying delay[J].Neurocomputing,2011,74(10):1626-1631.

[7]LIU Yurong,WANG Zidong,SERRANO A.Discrete-time recurrent neural networks with time-varying delays:Exponential stability analysis[J].Phys Lett A,2007,362(5/6):480-488.

[8]HUANG He,QU Yuzhong,LI Hanxiong.Robust stability analysis of switched Hopfield neural networks with time-varying delay under uncertainty[J].Phys Lett A,2005,345(4):345-354.

[9]ZONG Guangdeng,LIU Jia,ZHANG Yunxi.Delay-range-dependent exponential stability criteria and decay estimation for switched Hopfield neural networks of neural type[J].Nonlinear Analysis,2010,4(3):583-592.

[10]SUN Jian,LIU G P,CHEN Jie.Improved delay-range-dependent stability criteria for linear systems with time-varying delays[J].Automatica,2010,46(2):466-470.

[11]AHN C K.Switched exponential state estimation of neural networks based on passivity theory[J].Nonlinear Dyn,2012,67(1):573-586.

[12]LIAN Jie,ZHANG Kai.Exponential stability for switched Cohen-Grossberg neural networks with average dwell time[J].Nonlinear Dyn,2011,63(3):331-343.

[13]AHN C K.AnH∞approach to stability analysis of switched Hopfield neural networks with time-delay[J].Nonlinear Dyn,2010,60(4):703-711.

[14]HOU Linlin,ZONG Guangdeng,WU Yuqiang.Robust exponential stability analysis of discrete-time switched Hopfield neural networks with time delay[J].Nonlinear Analysis:Hybrid Systems,2011,5(3):525-534.

[15]ZHANG Dan,YU Li.Passivity analysis for discrete-time switched neural networks with various activation functions and mixed time delays[J].Nonlinear Dyn,2012,67(1):403-411.

[16]SONG Yong,FAN Jian,FEI Minrui,et al.RobustH∞control of discrete switched systems with time delay[J].Appl Math Comput,2008,205(1):159-169.

[17]XU Shengyuan,CHEN Tongwen.RobustH∞control for uncertain discrete-time stochastic bilinear systems with Markov switching[J].Internat J Robust Nonlinear Control,2005,15(5):201-217.

猜你喜歡
系統
Smartflower POP 一體式光伏系統
工業設計(2022年8期)2022-09-09 07:43:20
WJ-700無人機系統
ZC系列無人機遙感系統
北京測繪(2020年12期)2020-12-29 01:33:58
基于PowerPC+FPGA顯示系統
基于UG的發射箱自動化虛擬裝配系統開發
半沸制皂系統(下)
FAO系統特有功能分析及互聯互通探討
連通與提升系統的最后一塊拼圖 Audiolab 傲立 M-DAC mini
一德系統 德行天下
PLC在多段調速系統中的應用
主站蜘蛛池模板: 国产极品美女在线观看| 久久久久亚洲Av片无码观看| 成人a免费α片在线视频网站| 国产福利免费视频| 亚洲无码高清一区二区| 亚洲男人的天堂在线| 综合社区亚洲熟妇p| 国产成人亚洲精品蜜芽影院| 高清国产va日韩亚洲免费午夜电影| 亚洲最黄视频| 久久综合激情网| 在线亚洲小视频| 一级全黄毛片| 美女被操91视频| 亚洲第一视频网站| 亚洲青涩在线| 国产亚洲欧美日韩在线一区二区三区| 中文字幕在线欧美| 国产又色又刺激高潮免费看| 一区二区三区在线不卡免费| 国产亚洲高清在线精品99| 国产乱子伦无码精品小说| 日韩欧美国产精品| aⅴ免费在线观看| 在线看片中文字幕| AV熟女乱| 日本不卡视频在线| 国产成人精品亚洲77美色| 国产亚洲精品无码专| 在线播放91| yjizz国产在线视频网| 精品久久久久久久久久久| 久久久精品无码一区二区三区| 99在线观看精品视频| 日韩成人午夜| 亚洲人精品亚洲人成在线| 丰满人妻一区二区三区视频| 欧美成人区| 欧美色视频在线| 欧美日本一区二区三区免费| 依依成人精品无v国产| 欧美在线国产| 99久久精品国产麻豆婷婷| 无套av在线| 久久99国产乱子伦精品免| 1024你懂的国产精品| 97青草最新免费精品视频| 亚洲成肉网| 国产又爽又黄无遮挡免费观看| 91九色最新地址| 欧美另类一区| 日韩中文无码av超清| 91麻豆精品国产91久久久久| 国产成人久视频免费| 91色在线视频| 亚洲精品无码不卡在线播放| 亚洲精品自拍区在线观看| 在线中文字幕网| a级毛片免费看| 日本成人在线不卡视频| 国产九九精品视频| 精品亚洲欧美中文字幕在线看| 亚洲视频在线网| 91在线国内在线播放老师| 丁香五月婷婷激情基地| 亚洲成a人片7777| 中文字幕天无码久久精品视频免费 | 久草网视频在线| 不卡色老大久久综合网| 伊人婷婷色香五月综合缴缴情| 亚洲国产成人麻豆精品| 国产高潮流白浆视频| аⅴ资源中文在线天堂| 国产香蕉在线视频| 久久无码av三级| 久久精品免费国产大片| 青青草国产一区二区三区| 国产网站在线看| 日韩精品成人在线| 有专无码视频| 亚洲欧洲天堂色AV| 四虎永久免费地址在线网站|