999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

Delay-dependent absolute stability analysis of improved Lurie control system with multiple delays

2013-11-01 07:17:00

, , ,

(1.School of Mathematics and System Science,Shenyang Normal University,Shenyang 110034,China;2.Math department,Shenyang Guangquan Middle School,Shenyang 110141,China)

0 Introduction

It is well known that time delay is often an significant source for instability in various engineering systems[1-14].The stability problem of Lurie control system with time-delay has been studied by many researchers[11-14].

In this paper,we study the stability problem for Lurie control system with multiple delays,respectively.Based on the division of the delay,The system matrixBi(i=1,2,…,m)are decomposed.an suitable of Lyapunov functional is proposed to study this class of system.Some improved delay-dependent Lyapunov functionals are derived by employing an integral-inequality.An example is presented to illustrate the effectiveness for some existing results.

1 Problem statement

Consider the Lurie control system with multiple time delays of the form

wherex(t)∈Rnis state vector;A,Bi(i=1,2,…,m)∈Rn×n,D,C∈Rn×mare consent matrices;hi≥0(i=1,2,…,m)are time delays.φ(t)is a continuous vector valued initial condition.The nonlinearitiesfj(·)(i=1,2,…,m)satisfy the finite sector condition

In order to receive the main results,which begin with the following lemma

Lemma[2]Given any constant appropriately dimensioned matricesR,N,X,and scalarh>0 and vector valued functionsf(x)andηsuch that the following integration is well defined,then

2 Stability analysis

In order to improve the bound of the discrete-delayhi,let us decompose the matrixBiasBi=Bi1+Bi2(i=1,2,…,m),whereBi1,Bi2(i=1,2,…,m)are constant matrice.Then the original system∑can be represented in the form of a descriptor system with discrete and distributed delays

namel

with the initial conditon∑.

LetD(xt)be a new operator,we have

In order to guarantee that the difference operatorD(xt):C[-max{τi},0]→Rngiven by(4)is stable(i.e.difference equationD(xt)=0is asymptotically).

TheoremGiven positive scalarshi,system ∑ with nonlinearity located in the finite sector[0,K]is absolutely stable if there exist positive definite matricesP>0,Qi1>0,Qi2>0,Zi1>0,Zi2>0,Ki>0(i=1,2,…,m),diagonal matrixR=diag{r1,r2,…,rm}≥0,a scalarε>0and appropriately dimensioned matricesMij=…]T,i=1,2,…,m;j=1,2,…,N,satisfying

ProofFor∑ with nonlinearity located in the sector[0,K],condition(2)is equivalent to

Let us choose the following Lyapunov functional candidate for the system∑,

whereP>0,Qi1>0,Qi2>0,Zi1>0,Zi2>0,Ki>0(i=1,2,…,m)and diagonal matrixR=diag{r1,r2,…,rm}≥0are to be determined.

Then,taking the derivative ofV(t)with respect to along the solution of system ∑,at the same time,employing the lemma,schur complete and other mathematical technology,This theorem can be proved.The process can be omitted.

WhenD≡0,system ∑can reduce to the following linear system with multiple delays

Take the Lyapunov functional asV(t)=V1(t)+V2(t)+V3(t)+V5(t),whereV1(t),V2(t),V3(t)andV5(t)are defined in(6)~(10).

system ∑′is asymptotically stable.We can use theorom to prore this.

3 Illustrative example

ExampleConsider the system (1)with

This example was given in[10-14],The maximum value ofhmaxfor absolute stability of system(1)form is shown in table 1.Now we use the criterion in this paper to study the problem.Let us decompose matrixB1asB1=B11+B12as well as it did in[14],where

Solving LMI(5),table 1shows that the absolute stability criterion in this paper gives a much less conservative result than these in Refs.[10-14].

Table 1 Maximum upper bound of h for different Methods

4 Conclusion

The stability of Lurie control systems with multiple time-delays is investigated.By dividing the delay interval into n segments and choosing proper Lyapunov functional,the delay-dependent absolutely stable condition for Lurie control systems with multiple time-delay is received.The numerical example has shown significant improvement over some existing results.

[1]JACK H.Theory of Functional Differential Equation[M].New York:Spring,1977.

[2]HE Yong,WANG Qingguo,XIE Lihua,et al.Further improvemen of free-weighting matrices technique for systems with timevarying delay[J].Automat Control,2007,52(2):293-299.

[3]HE Yong,WU Min,SHE Jinhua.Parameter-dependent Lyapunov functional for stability of time-delay systems with polytopic type uncertainties[J].Automat Control,2004,49(5):828-832.

[4]WU Min,HE Yong,SHE Jinhua.New delay-dependent stability criteria and stabilizing method for neutral systems[J].Automat Control,2004,49(12):2266-2271.

[5]TIAN Junkang,ZHONG Shouming,XIONG Lianglin.Delay-dependent absolute stability of Lurie control systems with multiple time-delays[J].Appl Math Comput,2007,188(1):397-384.

[6]GAO Jie,XU Zhaodi.Guaranteed cost control of uncertain linear systems with both state and input delays[J].Journal of Shenyang Normal University Natural Science Edition,2009,27(4):408-412.

[7]CAO Jiuwen,ZHONG Shouming,HU Yuanyuan.Delay-dependent condition for absolute stability of Lurie control systems with multiple time delays and nonlinearities[J].J Math Anal Appl,2008,338(1):497-504.

[8]CAO Jiuwen,ZHONG Shouming.New delay-dependent condition for absolute stability of Lurie control systems with multiple timedelays and nonlinearities[J].Appl Math Comput,2007,194(1):250-258.

[9]QIU Fang,ZHANG Quanxin.Absolute stability analysis of Lurie control system with multiple delays:An integral-equality approach[J].Nonlinear Anal,2011,12(3):1475-1484.

[10]MIAN Xiaohong.Delay dependent conditions for absolute stability of Lurie type control systems[J].Acta Automat Sinica,1999,25(4):564-566.

[11]XU Bingji,LIAO Xiaoxin.Absolute stability criteria of delay-dependent for Lurie control systems[J].Acta Automat Sinica,2002,28(2):317-320.

[12]CHEN Dongyan,LIU Weihua.Delay-dependent robust stability for Lurie control systems with multiple time delays[J].Contr Theor Appl,2005,22(3):499-502.

[13]YANG Bin,CHEN Mianyun.Delay-dependent criterion for absolute stability of Lurie type control systems with time delays[J].Contr Theor Appl,2001,18(6):929-931.

[14]TIAN Junkang,ZHONG Shouming,XIONG Lianglin.Delay-dependent absolute stability of Lurie control systems with multiple time-delays[J].Appl Math Comput,2007,188(1):379-384.

主站蜘蛛池模板: 国禁国产you女视频网站| 亚洲视频四区| 性欧美久久| a级毛片一区二区免费视频| 免费不卡视频| 国产成熟女人性满足视频| 亚洲91精品视频| 成人一级免费视频| 久久综合结合久久狠狠狠97色| 亚洲黄网在线| 免费A级毛片无码无遮挡| 一区二区偷拍美女撒尿视频| 波多野结衣视频网站| 色综合狠狠操| 91久久偷偷做嫩草影院电| 亚洲国产中文精品va在线播放| 婷婷亚洲视频| 伊人久久精品亚洲午夜| 在线欧美国产| 亚洲欧美精品一中文字幕| 国产精品偷伦在线观看| 99久久亚洲综合精品TS| 国产精品无码AⅤ在线观看播放| 国产成年女人特黄特色大片免费| 久久99精品国产麻豆宅宅| 亚洲天堂首页| 国产午夜人做人免费视频中文| 国产av一码二码三码无码| 美女一级免费毛片| 思思热精品在线8| 国产成人啪视频一区二区三区| 青青久视频| 欧美日韩亚洲国产主播第一区| 国产地址二永久伊甸园| 国产白浆视频| 亚洲色图综合在线| 亚洲精品福利视频| 亚洲精品成人7777在线观看| 亚洲一区免费看| 国产丝袜无码一区二区视频| 狠狠色噜噜狠狠狠狠色综合久| 成人一级免费视频| 一级毛片免费不卡在线| 91精品视频网站| 无码综合天天久久综合网| 国产精品网拍在线| 欧美日韩专区| 亚洲欧美极品| 亚洲床戏一区| 无码国产偷倩在线播放老年人| 亚洲综合色区在线播放2019| 欧美日韩一区二区三区在线视频| 亚洲天堂视频网| 97色伦色在线综合视频| 天天综合网亚洲网站| 看国产一级毛片| 国产网站黄| 97国产精品视频人人做人人爱| 亚洲狠狠婷婷综合久久久久| 国产麻豆另类AV| 国产成人综合日韩精品无码首页 | 国产人人乐人人爱| 天天激情综合| 久久久久久午夜精品| 亚洲制服丝袜第一页| 亚洲日本中文字幕乱码中文 | 72种姿势欧美久久久大黄蕉| 国产欧美日韩专区发布| 国产综合亚洲欧洲区精品无码| 午夜免费小视频| 奇米影视狠狠精品7777| 国产国语一级毛片在线视频| 2024av在线无码中文最新| 婷五月综合| 国产精品自拍露脸视频| 99国产在线视频| 九九热在线视频| 国产在线麻豆波多野结衣| 亚洲欧美日韩另类| 国产精品私拍在线爆乳| 日a本亚洲中文在线观看| 麻豆精品在线视频|