999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

Improved fixed pointmethod for image restoration

2013-04-27 01:20:44YANXuefeiXUTingfaBAITingzhu
中國光學 2013年3期
關鍵詞:圖像復原

YAN Xue-fei,XU Ting-fa,BAITing-zhu

(Key Laboratory of Photoelectric Imaging Technology and System of the Ministry of Education,College of Optical Engineering,Beijing Institute of Technology,Beijing 100081,China)

*Corrponding author,E-mail:xutingfa@163.com

Improved fixed pointmethod for image restoration

YAN Xue-fei,XU Ting-fa*,BAITing-zhu

(Key Laboratory of Photoelectric Imaging Technology and System of the Ministry of Education,College of Optical Engineering,Beijing Institute of Technology,Beijing 100081,China)

*Corrponding author,E-mail:xutingfa@163.com

We analyze the fixed pointmethod with Tikhonov regularization under the periodic boundary conditions,and propose a changable regularization parametermethod.Firstly,we choose a bigger one to restrain the noise in the reconstructed image,and get a convergent result tomodify the initial gradient.Secondly,we choose a smaller one to increase the details in the image.Experimental results show that compared with other popular algorithms which solve the L1norm regularization function and Total Variation(TV)regularization function,the improved fixed pointmethod performs favorably in solving the problem of themotion degradation and Gaussian degradation.

image restoration;periodic boundary condition;Tikhonov regularization;change regularization parameter

1 Introduction

In modern society,images are importantmedia for human to obtain the information.However,the images are destroyed inevitably during imaging,copying,and transmission,such as image information is polluted by the noise.While,the highquality images are necessary in many areas.So the image restoration is a very important task.It is one of the earliest and most classical nonlinear inverse problems in imaging processing,dating back to the 1960′s.

2 Image degradation model

In this class of problems,the image blurring ismodeled as:

Where f(f∈RAB×1)is a AB×1 vector and represents the unknown A×B original image.g(g∈RAB×1)is a AB×1 vector and represents the A×B noisy blurred image.n(n∈RAB×1)is a AB×1 vector and represents thewhite Gaussian noise.H(H∈RAB×AB)represents the blur operator.In the case of spatially invariant blurs,it is thematrix representation of the convolution operation.The structure of H depends on the choice of boundary conditions,that is,the underlying assumptions on the image outside the field of view.

We consider the original image:

Zero boundary condition means that all pixels outside the borders are assumed to be zero,which can be pictured as embedding the image f in a large image:

In this case,H is a Block Toeplitz with Toeplitz Blocks(BTTB)matrix.

Periodic boundary condition means that the image repeats itself in all directions,which can be pictured as a large image embedded with image f:

In this case,H is a Block Circulant with Circulant Blocks(BCCB)matrix.

Reflexive(Neumann)boundary condition means that the scene outside the boundaries is amirror image of the scene inside the image boundaries,which can be pictured as a large image embedded with image f:

In this case,H is the sum of BTTB,Block Toeplitz with Hankel Blocks(BTHB),Block Hankel with Toeplitz Blocks(BHTB)and Block Hankelwith HankelBlocks(BHHB)matrices[1].

In this paperwe propose an improved fixed point method with Tikhonov regularization that we claim performs better than other popular algorithms in both subjective and objective judgements of the image restoration ability.It changes regularization parameters from bigger ones to small ones with iterations,and modifies the initial gradient at every iteration to increase the details in the reconstructed image.

3 Tikhonov regularization function

Aswe all know,H is often singular or very ill-conditioned.So the problem of estimating f from g is an Ill-posed Linear Inverse Problem(ILIP).A classical approach to ILIP is the Tikhonov regularization which can be expressed as:

whereλ(λ>0)is the regularization parameter,D is the penalty matrix.‖Df‖2is the regularizer or regularization functional,which has many choices such as:L1norm regularization functional[2-6],Total-Variation(TV)regularization functional[7-10]. There are algorithms for solving L1norm regularization functional such as:Gradient Projection for Space Resonstruction(GPSR)algorithm[11],which includes GPSR-basic algorithm,GPSR-bb algorithm and SpaRSA-monotone algorithm[12].There are algorithms for solving TV regularization functional such as:Tw IST algorithm[13-14],SALSA algorithm[15-16],FTVd algorithm[17-20]and fixed pointmethod[23].

The fixed pointmethod can be expressed as:

Begin the fixed point iterations:

Generally,when rk<0.001,we stop the iterations.

4 Improved fixed pointmethod

When the boundary condition of image blurring is the periodic boundary condition,we can choose penalty matrix as the negative Laplacian with periodic boundary condition L,which is a B×B partitioned matrix:

where I is an A×A identitymatrix,Θis a A×A zeromatrix.

We use thematlab function psf=fspecial(′motion′,71,56)to create the motion blurring kernel point spread function,and use g=imfilter(f,psf,′conv′,′same′,′circular′)to get the motion blurred image;g=imnoise(g,′Gaussian′,0,1×10-3)to add white Gaussian noise of zeromean and standard deviation 1×10-3.We run the fixed pointmethod and compare the reconstructed imageswhenλis different.

In the Fig.1,there are 256 pixel×256 pixel original image Lena(a),motion blurring kernel noisy blurred image(b),and image reconstructed when λ=10(c),λ=1(d),λ=10-1(e),λ=10-2(f).

We can find that when we choose a biggerλ,restored image has less noise and also less details; however,when we choose a smallerλ,reconstructed image has more noise and also more details. Therefore,we propose the change regularization pa-rametermethod.Firstly,we choose a biggerλto restrain the noise in the reconstructed image.Running the fixed pointmethod to get the convergent result f,and convolving with H tomodify the initial gradient r0to the real value.We use the new f,r0as the initial ones to run the fixed pointmethod again.Secondly,we choose a smallerλto increase the details in the reconstructed image.Repeating the above process until the suitable value is found:

Fig.1 Image restoration comparison of different regularization parameters

1.Give the initial value:λ=λ0,k<1,f0=0,r0=-HTg;

2.Run the fixed pointmethod to get the convergent result f;

3.f0=f,λ=λ·k,r0=Af0-HTg,back to 2.

4 Experimental results

Simulations are carried out to test the proposed algorithm.The Mean Structural Similarity Index Method(MSSIM)[24]is selected to evaluate the restored image quality.The SSIM index is defined as follows:

Where xjand yjare the image contents at the jthlocal window;and M is the number of local windows of the image.

We choose the image Lena as the test targetand compare the proposed algorithm with several state-ofthe-art algorithms.We choose the GPSR-bb algorithm as GPSR algorithm.

The parameters for the proposed algorithm are λ0=10,k=0.8.The parameters for the others are defaults in the papers by the authors.The parameters for the GPSR-bb algorithm areαmin=10-30,αmax=1030,λ=0.35.The parameters for the SpaRSA-monotone algorithm areλ=0.035,M=0,σ= 10-5,η=2.The parameters for the Tw IST algorithm areα=1.960 8,β=3.921 2.The parameter for the SALSA algorithm isλ=0.025.The parameter for the FTVd algorithm isλ=50 000.

For all the algorithms,we choose the same maximum iteration number as 10000;the same stop criterion as the relative error difference between two iterations is less than 1×10-7.All computations were performed under windows7 and matlab V 7.10(R2012a)running on a desktop computer with an Intel Core 530 duo CPU i3 and 2GB ofmemory.

Where X and Y are the original and the reconstructed images,respectively;μxandμyare themean intensity,σxandσyare the standard deviation;and σxyis the covariance.

Where L is the dynamic range of the pixel values(255 for 8-bit grayscale images),and K1and K2are small constants.

5.1 M otion degradation

We use thematlab function psf=fspecial(′motion′,71,56)to create the motion blurring kernel point spread function,and use g=im filter(f,psf,′conv′,′same′,′circular′)to get the motion blurred image,and use g=imnoise(g,′Gaussian′,0,1×-3)to add white Gaussian noise of zero mean and standard deviation 1×10-3.

In the Fig.2,there are 256 pixel×256 pixel original image Lena(a),motion blurring kernel noisy blurred image(b),image restored by the improved fixed pointmethod(c),GPSR-bb(d),SpaRSA-monotone(e),TwIST(f),SALSA(g)and FTVd(h).

Fig.2 Restoration comparison ofmotion degradations

Tab.1 contains the MSSIM and time comparison between the proposed algorithm and several state-of-the-art algorithms with motion degradation.

Tab.1 Restoration com parison ofmotion degradations

5.2 Gaussian degradation

We use the matlab function psf=fspecial(′Gaussian′,[21,28],10)to create the Gaussian blurring kernel point spread function,and use g= imfilter(f,psf,′conv′,′same′,′circular′)to get the Gaussian blurred image,and use g=imnoise(g,′Gaussian′,0,1×10-3)to add white Gaussian noise of zeromean and standard deviation 1×10-3.

Fig.3 Restoration comparison of Gaussian degradations

In the Fig.3,there are 256 pixel×256 pixel original image Lena(a),Gaussian blurring kernel noisy blurred image(b),image restored by the improved fixed point method(c),GPSR-bb(d),SpaRSA-monotone(e),Tw IST(f),SALSA(g)and FTVd(h).

Tab.2 contains the MSSIM and the time comparison between the proposed algorithm and several state-of-the-art algorithms,with the Gaussian degradation.From the above comparisons,we can see that under the high noise level,the improved fixed point method performs better than the others,and the FTVd algorithm is totally unfit.

Tab.2 Restoration comparison of Gaussian degradations

6 Conclusion

We propose,analyze,and test the improved fixed pointmethod for solving the Tikhonov regularization under the periodic boundary conditions in image restoration problem.In experimental comparisons with state-of-the-art algorithms,the proposed algorithm achieves remarkable performance in both subjective and objective judgments of the image restoration ability.

[1]HANSEN PC,NAGY JG,DEBLURRING D P.Images:Matrices,Spectra,and Filtering[M].Philadelphia:SIAM,Society for Industrial and Applied Mathematics,2006.

[2]DAUBECHIES I,FRIESEM D,MOL C D.An iterative thresholding algorithm for linear inverse problems with a sparsity constraint[J].Communications in Pure and Applied Mathematics,2004,57:1413-1457.

[3]ELAD M,MATALON B,ZIBULEVSKY M.Image denoising with shrinkage and redundant representations[C]//Proc.of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition,CVPR″2006,New York,2006,2:1924-1931.

[4]FIGUEIREDOM,BIOUCAS-DIAS J,NOWAK R.Majorizationminimization algorithms forwavelet-based image restoration[J].IEEE T.Image Process.,2007,16(12):2980-2991.

[5]FIGUEIREDO M,NOWAK R.An EM algorithm for wavelet-based image restoration[J].IEEE T.Image Process.,2003,12:906-916.

[6]FIGUEIREDO M,NOWAK R.A bound optimization approach to wavelet-based image deconvolution[C]//Proc.of the IEEE International Conference on Image Processing,ICIP′2005,Genoa,Italy,2005,2:782.

[7]RUDIN L,OSHER S,FATEMIE.Nonlinear total variation based noise removal algorithms[J].Phys.D,1992,60(1-4):259-268.

[8]RUDIN L,OSHER S.Total variation based image restoration with free local constraints[C]//Proc.of the IEEE International Conference on Image Processing,ICIP,1994,1:31-35.

[9]CHAMBOLLE A.An algorithm for total variationminimizationand applications[J].J.Math.Imaging Vis.,2004,20:89-97.

[10]CHAN T,ESEDOGLU S,PARK F,et al..Recent developments in total variation image restoration:Handbook of Mathematical Models in Computer Vision[M].New York:Springer Verlag,2005.

[11]FIGUEIREDO M A T,NOWAK R D,WRIGHT S J.Gradient projection for sparse reconstruction:application to compressed sensing and other inverse problems[J].IEEE J.Selected Topics in Signal Processing,2007:586-597.

[12]WRIGHT S J,NOWAK R D,FIGUEIREDOM A T.Sparse reconstruction by separable approximation[J].IEEE T.Signal Process.,2009,57(7):2479-2493.

[13]BIOUCAS-DIAS J,FIGUEIREDO M.A new Tw IST:two-step iterative shrinkage/thresholding algorithms for image restoration[J].IEEE T.Image Process.,2007,16(12):2992-3004.

[14]BIOUCAS-DIAS J,FIGUEIREDO M.Two-step algorithms for linear inverse problems with non-quadratic regularization[C]//IEEE International Conference on Image Processing-ICIP′2007,Sept.16-Oct.10,2007,San Autonio,TX,2007,1:105-108.

[15]AFONSOM V,BIOUCAS-DIAS JM,FIGUEIREDOM A T.Fast image recovery using variable splitting and constrained optimization[J].IEEE T.Image Process.,2010,19(9):2345-2356.

[16]FIGUEIREDO M,BIOUCAS-DIAS JM,AFONSOM V.Fast frame-based image deconvolution using variable splitting and constrained optimization[C]//IEEEWorkshop on Statistical Signal Processing-SSP′2009,Aug.31-Sep.03,2009,Cardiff UK,2009.

[17]AFONSOM V,BIOUCAS-DIAS JM,FIGUEIREDOM A T.An augmented Lagrangian approach to the constrained optimization formulation of imaging inverse problems[J].IEEE T.Image Process.,2011,20(3):681-695.

[18]AFONSOM V,BIOUCAS-DIAS JM,FIGUEIREDOM A T.A fast algorithm for the constrained formulation of compressive image reconstruction and other linear inverse problems[C]//IEEE International Conference on Acoustics,Speech,and Signal Processing(ICASSP),Mar.14-19,2010,Dallas,US,2010.

[19]WANG Y,YANG J,YINW,etal..A new alternatingminimization algorithm for total variation image reconstruction[J]. SIAM J.Imaging Sciences,2008,1(3):248-272.

[20]YANG J,YINW,ZHANG Y,et al..A fast algorithm for edge-preserving variationalmultichannel image restoration[J]. SIAM J.Imaging Sciences,2009,2(2):569-592.

[21]YANG J,ZHANG Y,YIN W.An efficient TVL1 algorithm for deblurring multichannel images corrupted by impulsive noise[J].SIAM J.Sci.Compu.,2009,31(4):2842-2865.

[22]TAO M,YANG J,HE B.Alternating direction algorithms for total variation deconvolution in image reconstruction[EB/ OL](2009-06-07).[2012-07-11].http://www.optimization-online.org/DB_HTML/2009/11/2463.html.

[23]VOGEL C R,OMAN M E.Iterative methods for total variation denoising[J].SIAM J.Sci.Comput,17(1),227-238,1996.

[24]WANG Z,BOVIK A C,SHEIKH H R,et al..Image quality assessment:from error visibility to structural similarity[J]. IEEE T.Image Process.,2004,13(4):600-612.

Authors′biographies:

YAN Xue-fei(1979—),male,PhD student.He received his B.S.degree in electronics engineering from Shanxi University in 2002,and received his M.S. degree in Optical Engineering from Beijing Institute of Technology in 2007.His research interests include image deblurring.E-mail:yxfamyself@sina.com

BAITing-zhu(1955—),male,M.PhD supervisor,Professor,PhD.He received his B.S.,M.S.and Ph.D.degrees in Optical Engineering from Beijing Institute of Technology in 1982,1987 and 2001,respectively.His research interests include electro-optical imaging technology,photoelectric detection technology,and image information processing technology.E-mail:tzhbai@bit.edu.cn

XU Ting-fa(1968—),male,M.PhD supervisor,Professor,post doctorate.He received his B.S.and M.S. degrees in physics from Northeast Normal University in 1992 and 2000,respectively,and received his Ph.D. degree in Optical Engineering from Changchun Institute of Optics,Fine Mechanics and Physics,Chinese A-cademy of Sciences in 2004.He finished studies in mobile postdoctoral station of South China University of Technology in 2006.His research interests include photoelectric imaging detection and recognition,target tracking,photoelectric measurement.E-mail:xutingfa@163.com

改進的固定點圖像復原算法

閻雪飛,許廷發*,白廷柱
(北京理工大學光電學院光電成像技術與系統教育部重點實驗室,北京100081)

研究了周期邊界條件下,Tikhonov正則化的固定點算法,提出了變化正則化參數的方法。首先對正則化參數取較大值,抑制復原圖像中的噪聲,通過得出的收斂結果來修正初始梯度;然后對正則化參數取較小值,以增強復原圖像中的細節。實驗結果表明,與當前求解L1范數正則化函數和全變分正則化函數的流行算法比較,本文算法對于運動模糊與高斯模糊圖像的復原效果更佳。

圖像復原;周期邊界條件;Tikhonov正則化;變正則化參數

TP391.4

A

1674-2915(2013)03-0318-07

2013-02-11;

2013-04-13

Major State Basic Research Development Program of China(973 Program,No.2009CB72400603);The National Natural Science:Scientific Instrumentation Special Project(No.61027002);The National Natural Science Foundation of China(No.60972100)

10.3788/CO.20130603.0318

猜你喜歡
圖像復原
雙背景光自適應融合與透射圖精準估計水下圖像復原
基于MTF的實踐九號衛星圖像復原方法研究
數字圖像復原專利技術綜述
大科技·C版(2019年1期)2019-09-10 14:45:17
虛擬現實的圖像復原真實性優化仿真研究
數碼世界(2017年12期)2017-12-28 15:45:13
一種基于顯著性邊緣的運動模糊圖像復原方法
圖像復原的一種新的加速動量梯度投影法
科技資訊(2016年27期)2017-03-01 18:23:16
基于月球觀測的FY-2G中波紅外波段在軌調制傳遞函數評價與圖像復原
基于MTFC的遙感圖像復原方法
模糊圖像復原的高階全變差正則化模型構建
一種自適應正則化技術的圖像復原方法
主站蜘蛛池模板: 亚洲欧美日韩中文字幕在线| 亚洲69视频| 精品国产免费观看一区| 亚洲第一区精品日韩在线播放| 亚洲免费黄色网| 日日碰狠狠添天天爽| 国产乱人伦AV在线A| 91视频青青草| 99热这里只有精品免费| 日韩黄色大片免费看| 在线观看无码av免费不卡网站| 欧美精品aⅴ在线视频| 国产精品吹潮在线观看中文| 原味小视频在线www国产| 456亚洲人成高清在线| 亚洲伊人天堂| 亚洲色图综合在线| 国产成人精品无码一区二| 国产日韩欧美在线播放| 色综合久久88| 丁香综合在线| 激情综合网激情综合| 国产精品人人做人人爽人人添| 国产无吗一区二区三区在线欢| 毛片手机在线看| 中文字幕久久波多野结衣| 国产视频自拍一区| 五月婷婷欧美| 伊人国产无码高清视频| 国产精品内射视频| 国产理论最新国产精品视频| 国产成人免费手机在线观看视频| 午夜国产大片免费观看| 国产国模一区二区三区四区| 伦伦影院精品一区| aaa国产一级毛片| 免费aa毛片| 男人天堂亚洲天堂| 久久窝窝国产精品午夜看片| 好紧好深好大乳无码中文字幕| 免费看av在线网站网址| 国产网站免费| 亚洲精品第一页不卡| 欧美.成人.综合在线| 怡红院美国分院一区二区| 久久99热这里只有精品免费看| 亚亚洲乱码一二三四区| 欧美精品亚洲精品日韩专区va| 亚洲国产AV无码综合原创| 国产白浆视频| 国产大片喷水在线在线视频| 亚洲精品大秀视频| 亚洲欧美日韩高清综合678| 欧美成在线视频| 国产在线视频福利资源站| av一区二区无码在线| 一级毛片无毒不卡直接观看| 亚洲综合色在线| 亚洲Av综合日韩精品久久久| 欧美成一级| 亚洲AV无码不卡无码| 新SSS无码手机在线观看| 熟女日韩精品2区| 97久久精品人人做人人爽| 为你提供最新久久精品久久综合| 亚洲天堂.com| yjizz国产在线视频网| 日本爱爱精品一区二区| 亚洲免费三区| 久久久久青草大香线综合精品| 久久婷婷综合色一区二区| 九九久久精品免费观看| 91精品视频在线播放| 青青青视频91在线 | 91小视频在线播放| 国产拍在线| 99久久国产综合精品2020| av午夜福利一片免费看| 又黄又爽视频好爽视频| 91区国产福利在线观看午夜| 在线中文字幕日韩| 日韩美毛片|