摘要:數(shù)學(xué)思想和方法是數(shù)學(xué)知識的精髓,又是知識轉(zhuǎn)化為能力的橋梁.目前初中階段,主要數(shù)學(xué)思想方法有:數(shù)形結(jié)合的思想、分類討論的思想、整體思想、化歸的思想、轉(zhuǎn)化思想、歸納思想、類比的思想、函數(shù)的思想、辯證思想、、方程與函數(shù)的思想方法等.在初中數(shù)學(xué)教材中集中了大量的優(yōu)秀例題和習(xí)題,它們所體現(xiàn)的數(shù)學(xué)知識和數(shù)學(xué)方法固然重要,但其蘊(yùn)涵的數(shù)學(xué)思想?yún)s更顯重要,作為一線教師,要善于挖掘例題、習(xí)題的潛在功能.
關(guān)鍵詞:數(shù)學(xué)思想 數(shù)學(xué)方法
九年義務(wù)教育全日制初級中學(xué)數(shù)學(xué)《新課程標(biāo)準(zhǔn)》中指出:教師應(yīng)激發(fā)學(xué)生的學(xué)習(xí)積極性,向?qū)W生提供充分從事數(shù)學(xué)活動的機(jī)會,幫助他們在自主探索和合作交流的過程中真正理解和掌握基本的數(shù)學(xué)知識與技能、數(shù)學(xué)思想和方法,獲得廣泛的數(shù)學(xué)活動經(jīng)驗(yàn).學(xué)生是數(shù)學(xué)學(xué)習(xí)的主人,教師是數(shù)學(xué)學(xué)習(xí)的組織者、引導(dǎo)者與合作者.
一、遵循認(rèn)識規(guī)律,把握教學(xué)原則
實(shí)施創(chuàng)新教育要達(dá)到《數(shù)學(xué)新課標(biāo)》的基本要求,教學(xué)中應(yīng)遵循以下幾項(xiàng)原則:
1.滲透“方法”,了解“思想”.
由于初中學(xué)生數(shù)學(xué)知識比較貧乏,抽象思維能力也較為薄弱,把數(shù)學(xué)思想、方法作為一門獨(dú)立的課程還缺乏應(yīng)有的基礎(chǔ).因而只能將數(shù)學(xué)知識作為載體,把數(shù)學(xué)思想和方法的教學(xué)滲透到數(shù)學(xué)知識的教學(xué)中.教師要把握好滲透的契機(jī),重視數(shù)學(xué)概念、公式、定理、法則的提出過程,知識的形成、發(fā)展過程,解決問題和規(guī)律的概括過程,使學(xué)生在這些過程中展開思維,從而發(fā)展他們的科學(xué)精神和創(chuàng)新意識,形成獲取、發(fā)展新知識,運(yùn)用新知識解決問題.忽視或壓縮這些過程,一味灌輸知識的結(jié)論,就必然失去滲透數(shù)學(xué)思想、方法的一次次良機(jī).如北師大版初中數(shù)學(xué)七年級上冊課本《有理數(shù)》這一章,與原來部編教材相比,它少了一節(jié)──“有理數(shù)大小的比較”,而它的要求則貫穿在整章之中.在數(shù)軸教學(xué)之后,就引出了“在數(shù)軸上表示的兩個數(shù),右邊的數(shù)總比左邊的數(shù)大”,“正數(shù)都大于0,負(fù)數(shù)都小于0,正數(shù)大于一切負(fù)數(shù)”.而兩個負(fù)數(shù)比較大小的全過程單獨(dú)地放在絕對值教學(xué)之后解決.教師在教學(xué)中應(yīng)把握住這個逐級滲透的原則,既使這一章節(jié)的重點(diǎn)突出,難點(diǎn)分散;又向?qū)W生滲透了數(shù)形結(jié)合的思想,學(xué)生易于接受.
2.訓(xùn)練“方法”,理解“思想”.
數(shù)學(xué)思想的內(nèi)容是相當(dāng)豐富的,方法也有難有易.因此,必須分層次地進(jìn)行滲透和教學(xué).這就需要教師全面地熟悉初中三個年級的教材,鉆研教材,努力挖掘教材中進(jìn)行數(shù)學(xué)思想、方法滲透的各種因素,對這些知識從思想方法的角度作認(rèn)真分析,按照初中三個年級不同的年齡特征、知識掌握的程度、認(rèn)知能力、理解能力和可接受性能力由淺入深,由易到難分層次地貫徹?cái)?shù)學(xué)思想、方法的教學(xué).如在教學(xué)同底數(shù)冪的乘法時,引導(dǎo)學(xué)生先研究底數(shù)、指數(shù)為具體數(shù)的同底數(shù)冪的運(yùn)算方法和運(yùn)算結(jié)果,從而歸納出一般方法,在得出用a表示底數(shù),用m、n表示指數(shù)的一般法則以后,再要求學(xué)生應(yīng)用一般法則來指導(dǎo)具體的運(yùn)算.在整個教學(xué)中,教師分層次地滲透了歸納和演繹的數(shù)學(xué)方法,對學(xué)生養(yǎng)成良好的思維習(xí)慣起重要作用.
二、初中階段常見的幾種數(shù)學(xué)思想方法舉例說明
1.數(shù)形結(jié)合思想.
數(shù)和式是問題的抽象和概括、圖形和圖像是問題的具體和直觀的反映.初中代數(shù)教材列方程解應(yīng)用題所選很多是采用了圖示法的例題,所以,教學(xué)過程中要充分利用圖形的直觀性和具體性,引導(dǎo)學(xué)生從圖形上發(fā)現(xiàn)數(shù)量關(guān)系找出解決問題的突破口.學(xué)生掌握了這一思想要比掌握一個公式或一種具體方法更有價值,對解決問題更具有指導(dǎo)意義.
2.方程思想.
眾所周知,方程思想是初等代數(shù)思想方法的主體,應(yīng)用十分廣泛,可謂數(shù)學(xué)大廈基石之一,在眾多的數(shù)學(xué)思想中顯得十分重要。
3.方程思想.
主要是指建立方程(組)解決實(shí)際問題的思想方法.教材中大量出現(xiàn)這種思想方法,如列方程解應(yīng)用題,求函數(shù)解析式,利用根的判別式、根與系數(shù)關(guān)系求字母系數(shù)的值等.
教學(xué)時,可有意識的引導(dǎo)學(xué)生發(fā)現(xiàn)等量關(guān)系從而建立方程.如講“利用待定系數(shù)法確定二次函數(shù)解析式”時,可啟發(fā)學(xué)生去發(fā)現(xiàn)確定解析式的關(guān)鍵是求出各項(xiàng)系數(shù),可把他們看成三個“未知量”告訴學(xué)生利用方程思想來解決,那學(xué)生就會自覺的去找三個等量關(guān)系建立方程組.在這里如果單講解題步驟,就會顯得呆板、僵硬,學(xué)生只知其然,不知其所以然.與此同時,還要注意滲透其他與方程思想有密切關(guān)系的數(shù)學(xué)思想,諸如換元,消元,降次,函數(shù),化歸,整體,分類等思想,這樣可起到撥亮一盞燈,照亮一大片的作用.
4.辯證思想.
辯證思想是科學(xué)世界觀在數(shù)學(xué)中的體現(xiàn),是最重要的數(shù)學(xué)思想之一,自然界中的一切現(xiàn)象和過程都存在著對立統(tǒng)一規(guī)律,數(shù)學(xué)中的有理數(shù)和無理數(shù)、整式和分式、已知和未知、特殊和一般、常量和變量、整體和局部等同樣蘊(yùn)涵著這一辯證思想.因此,教學(xué)時,應(yīng)有意識地滲透.如初三《分式方程》一節(jié),就體現(xiàn)了分式方程與整式方程的對立統(tǒng)一思想,教學(xué)時,不能只簡單介紹分式方程的概念和解法,而要滲透上述思想,我們可以從復(fù)習(xí)整式和分式的概念出發(fā),然后依據(jù)辯證思想自然引出分式方程,接著帶領(lǐng)學(xué)生領(lǐng)會兩個概念的對立性(非此即彼)和統(tǒng)一性(統(tǒng)稱有理方程),再利用未知與已知的轉(zhuǎn)化思想啟發(fā)學(xué)生說出分式方程的解題基本思想,從而發(fā)現(xiàn)兩種方程在解法上雖有不同,但卻存在內(nèi)在的必然聯(lián)系.這樣,學(xué)生在知曉整式方程與分式方程概念和解法的辯證關(guān)系后,就能進(jìn)一步理解和掌握分式方程,收到一種居高臨下,深入淺出的教學(xué)效果.因此,抓辯證思想教學(xué),不僅可以培養(yǎng)學(xué)生的科學(xué)意識,而且可提高學(xué)生的探索能力和觀察能力。
教學(xué)中那種只重視講授表層知識,而不注重滲透數(shù)學(xué)思想、方法的教學(xué),是不完備的教學(xué),它不利于學(xué)生對所學(xué)知識的真正理解和掌握,使學(xué)生的知識水平永遠(yuǎn)停留在一個初級階段,難以提高;反之,如果單純強(qiáng)調(diào)數(shù)學(xué)思想和方法,而忽略表層知識的教學(xué),就會使教學(xué)流于形式,成為無源水,無本之木,學(xué)生也難以領(lǐng)略深層知識的真諦.因此數(shù)學(xué)思想的教學(xué)應(yīng)與整個表層知識的講授融為一體.只要一線教師課前精心設(shè)計(jì),課上精心組織,充分發(fā)揮學(xué)生的主體作用,多創(chuàng)設(shè)情景,多提供機(jī)會,堅(jiān)持不懈,就能達(dá)到我們的教學(xué)育人目標(biāo)。