摘要:利用Levenberg-Marquardt(LM)算法對BP神經網絡法進行改進,提出了基于改進型LM-BP神經網絡模型的糧食產量預測方法。提取了糧食作物播種面積、化肥施用量、糧食作物有效灌溉面積、受災面積、農村用電量、農業機械總動力、從事農業的人口、農村居民家庭生產性固定資產原值、農村居民家庭平均純收入9個因子作為輸入因子構筑模型,糧食產量作為網絡輸出,通過LM算法使網絡誤差最小化,最后使用相關系數、相對誤差等指標對模型的模擬結果進行檢驗。結果表明,訓練樣本集中模擬值和實際值的相關系數為0.996,平均相對誤差為0.47%;檢測樣本集中,預測值和實際值的相關系數為0.994,平均相對誤差為0.56%;該模型具有較高的擬合精度和預測精度,將此網絡模型應用于糧食產量預測是有效的、可行的。
關鍵詞:LM-BP網絡;糧食產量;預測
中圖分類號:S11+4;TP183 文獻標識碼:A 文章編號:0439-8114(2012)23-5479-03
Forecasting Corn Production Based on LM-BP Neural Network
GUO Qing-chun1,3,4,HE Zhen-fang2,4,LI Li3
(1. Teaching Affairs Office, Shaanxi Radio TV University, Xi’an 710068, China; 2. Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China; 3. Institute of Earth Environment Research, Chinese Academy of Sciences, Xi’an 710075, China; 4. Graduate University, Chinese Academy of Sciences, Beijing 100049, China)
Abstract: A corn production porecasting method based on improved LM-BP was proposed. According to measurement and agricultural significance principle, 9 factors of grain-sown area, fertilizer input, effective grain irrigated area, stricken area, rural electricity consumption, total agriculture mechanism power, the population engaged in agriculture, rural residents family productive assets, the average net income of rural households were extracted as the network input; corn production was extracted as the network output. The LM algorithm could minimize the error, and the modeling results were evaluated with the correlation coefficients, relative error, etc. For training sample set, the correlation coefficient between the simulated value and the actual value was 0.996, the average relative error was 0.47%; for testing sample set, the correlation coefficient between the forecasted value and the actual value was 0.994, the average relative error was 0.56%. The results showed that the improved LM-BP model could improve simulation precision and stability of the model. This method is effective and feasible for corn production prediction.
Key words: LM-BP network; corn production; forecast
糧食產量預測是復雜的農學和統計學問題,受自然環境、政策、資源投入等多因素的影響。國內外的相關研究中,不少學者構建了許多很有價值的理論假說和預測模型,主要有4類:投入產出模型、遙感技術預測模型、氣候生產力模型及多元回歸和因子分析模型,這些模型從不同角度對糧食產量預測進行了研究[1,2]。但這些模型多數采用傳統的統計預測技術,如時間序列統計模型、定性與推斷技術、因果關系方法。而糧食產量是受不確定性因素影響的,是一個復雜的非線性系統。
人工神經網絡具有很強的處理大規模復雜非線性系統的能力。近年來,許多學者已將人工神經網絡成功地應用于實際問題的預測中,取得了令人滿意的結果[3-12]。為此,采用改進算法的神經網絡建立了糧食產量預測系統,結果表明,基于改進算法的BP神經網絡預測模型具有良好的預測精度、訓練時間短、收斂速度快等特點。
1 仿真試驗數據
1.1 預測因子的選擇
根據能夠計量及具有農學意義的原則,結合農業專家的意見,通過前期大量的影響因子分析[13-15],選取1994-2009年的糧食總產量為輸出因子,初步選取糧食作物播種面積、化肥施用量、糧食作物有效灌溉面積、受災面積、農村用電量、農業機械總動力、從事農業的人口、農村居民家庭生產性固定資產原值、農村居民家庭平均純收入9個因子作為輸入因子構筑模型,原始數據來源于2010年《中國統計年鑒》。
1.2 網絡輸入的初始化
為了消除不同因子之間由于量綱和數值大小的差異而造成的誤差,以及由于輸入數值過大造成溢出,首先需要對數據進行標準化處理,即把輸入數據轉化為[0,1]或[-1,1]的數。通過公式y=(x-min(x))/(max(x)-min(x))對糧食產量進行處理,得到了符合網絡要求的數據。減少了識別數據的動態范圍,使預測成功的可能性得以提高。然后將數據分成兩部分:網絡的訓練樣本集(前11年的數據)和檢測樣本集(后5年的數據)。
2 預測仿真模型的建立
BP網絡是誤差反向傳播(Back Propagation)人工神經網絡的簡稱,是目前計算方法比較成熟、應用比較廣泛、效果比較好、模擬生態經濟系統的神經網絡模型,但傳統BP網絡存在學習過程收斂慢,局部極小、魯棒性不好、網絡性能差等缺點。為了改進算法,引入Levenberg-Marquardt優化算法,其基本思路是使其每次迭代不再沿著單一的負梯度方向,而是允許誤差沿著惡化的方向進行搜索,同時通過在最速梯度下降法和高斯-牛頓法之間自適應調整來優化網絡權值,使網絡能夠有效收斂,大大提高網絡的收斂速度和泛化能力,它能夠降低網絡對誤差曲面局部細節的敏感性,有效抑制網絡陷入局部極小。
Levenberg-Marquardt算法實際上是梯度下降法和擬牛頓法的結合,該算法期望在不計算Hessian矩陣的情況下獲得高階的訓練速度,其公式表達為XK+1=XK-[JTJ+μI]-1JTe,其中,JT為雅克比矩陣,e是網絡誤差向量。如果μ=0的話,就變成采用近似Hessian矩陣的擬牛頓法;如果μ很大,即成為小步長的梯度下降法,由于牛頓法在誤差極小點附近通常能夠收斂得更快更準確,因此算法的目的就是盡快轉換為牛頓法。如果某次迭代成功,誤差性能函數減小,那么就減小μ值,而如果迭代失敗,就增加μ值。如此可以使得誤差性能函數隨著迭代的進行而下降到極小值。Matlab工具箱提供了Trainlm 函數Levenberg-Marquardt算法的計算。
網絡結構的選擇是應用BP網絡成功與否的關鍵因素之一,一個規模過大的神經網絡容易造成網絡容錯性能下降、網絡結構復雜、泛化能力較差等缺陷;而規模過小的神經網絡往往對訓練樣本的學習較為困難,學習過程可能不收斂,影響網絡的表現能力,降低網絡應用的精度。理論研究表明,只要具有足夠的隱層神經元,3層人工神經網絡可以無限地逼近任何時間序列和函數,因此這里采用含有一個隱含層的3層神經網絡結構。隱含層神經元數的選擇較為復雜,它關系到整個BP網絡的精確度和學習效率,但目前,它的選取尚無一般的指導原則,只能根據一些經驗法則或通過試驗來確定,如Hecht-Nielsen提出的“2N+1”法,由輸入矩陣可以確定輸入層節點數為9,根據“2N+1”這一經驗,可確定隱含層節點數為19;輸出層節點數為1,這樣就構成了一個9-19-1的BP神經網絡模型,其中,訓練函數為Trainlm,輸入層到隱含層以及隱含層到輸出層的傳遞函數分別為Logsig和Purelm,最大訓練次數Epochs為50 000次;訓練誤差精度Goal為0.001;訓練時間間隔Show為5,學習步長Lc為0.5,動量因子Me為0.95,其他參數均選用缺省值。
3 仿真結果
取1994-2004年的11個實際產量作為訓練樣本集,將2005-2009年的5個實際產量作為預測效果檢測樣本集。將1994-2004年9個指標的原始數據作為BP神經網絡的輸入樣本,糧食產量實際值作為輸出樣本,然后對網絡進行訓練,可得相應結點的權值與閾值,將2005-2009年9個指標的原始數據(檢測樣本)作為網絡的仿真輸入,得到最終預測結果,表1是1994-2009年中國糧食實際產量和神經網絡方法模擬值對比分析結果。
從表1可以看出,訓練樣本集中擬合精度平均相對誤差為0.47%,最大值為2004年的1.13%,模擬值和實際值的相關系數為0.996;檢測樣本集中,BP神經網絡預測模型得到的預測值和實際值具有較好的擬合效果,平均相對誤差為0.56%,最大相對誤差為1.11%,最小相對誤差僅為0.04%,模擬值和實際值的相關系數為0.994;2005-2009年的糧食產量預測值的相對誤差均較小。這種改進后的方法比較有效,利用該算法獲得的預測數據結果較好。
總之,由以上分析結果可以看出,無論是擬合精度還是預測5個獨立樣本,BP神經網絡模型的精度都比較高。但從預測結果也可以看出,BP網絡模型方法預測的平均相對誤差為0.56%,平均預測精度仍有待提高。
4 小結與討論
針對中國糧食產量預測問題,將BP神經網絡應用于國家糧食安全預警系統中,采用1994-2004年的中國糧食產量和影響因子的歷史數據建立模型,利用2005-2009年的數據檢驗模型,研究得出以下結論。
1)由于常規統計模型難以滿足糧食產量的預測要求,提出的改進BP算法較好地解決了神經網絡收斂慢和易陷入局部極小值的問題,通過建立預測模型,運用該改進方法對中國糧食產量進行了預測,實例證明,運用基于Levenberg-Marquardt算法的改進BP神經網絡,無論從訓練結果精度上還是在收斂性能上都表現出較好的效果,說明運用該方法來預測糧食產量是完全可行的,彌補了傳統BP算法的不足,提高了預測精度,加快了收斂速度,而且具有很好的外延性。
2)BP神經網絡模型的預測精度高,預測值和實際產量的擬合性好。BP神經網絡法允許原始的隨機數據或數據中含有較多的噪聲,這是它區別于其他模型的最大優勢,因而任何能用傳統的模型分析或統計方法解決的問題,BP神經網絡能處理得更好。在進行糧食產量預測時,BP神經網絡法是一種非常理想的預測方法,但是在構造神經網絡的預測模型時,要注意正確選擇影響因素,不要漏掉對預測對象有重大影響的因素。
由于糧食產量受各種因素的影響,波動性較大,除了受到上述9種因素的影響外,在很大程度上還受國家宏觀政策、作物品種、耕作技術等因素的影響,如何更全面地將難以量化的因素也納入模型中進行考慮分析,從而不斷地改進預測模型、提高預測精度,是需要進一步研究的工作。
參考文獻:
[1] 和文超,師學義,鄧青云,等.土地利用規劃修編中糧食產量預測方法比較[J].農業工程學報,2011,27(12):348-352.
[2] 周永生,肖玉歡,黃潤生. 基于多元線性回歸的廣西糧食產量預測[J]. 南方農業學報,2011,42(9):1165-1167.
[3] 王巧華,文友先.基于BP神經網絡的雞蛋大小分級方法研究[J].湖北農業科學,2005(1):97-99.
[4] 于平福,陸宇明,韋莉萍,等.基于小波廣義回歸神經網絡的糧食產量預測模型[J].湖北農業科學,2011,50(10):2135-2137.
[5] 李紅平,魏振方,郭衛霞.小麥白粉病的數學模型預測[J].湖北農業科學,2011,50(17):3611-3613.
[6] 李 艷,劉 軍.農產品價格預測系統設計與實現[J].湖北農業科學,2011,50(14):2976-2978.
[7] 黃 華,黎未然.人工神經網絡在柚皮總黃酮提取中的應用[J].湖北農業科學,2011,50(10):2088-2091.
[8] 汪東升,李小昱,李 鵬,等.基于小波和神經網絡的柴油機失火故障檢測[J].湖北農業科學,2011,50(15):3181-3183.
[9] 梁 丹,李小昱,李培武,等.近紅外光譜法對食用植物油品種的快速鑒別[J].湖北農業科學,2011,50(16):3383-3385.
[10] 吳澤鑫,李小昱,王 為,等. 基于近紅外光譜的番茄農藥殘留無損檢測方法研究[J].湖北農業科學,2010,49(4):961-963.
[11] 章 英.基于收購質量的烤煙煙葉無損檢測技術研究綜述[J].湖北農業科學,2011,50(7):1297-1300.
[12] 李 哲,李干瓊,董曉霞,等.農產品市場價格短期預測研究進展[J]. 湖北農業科學,2011,50(17):3666-3675.
[13] 宰松梅,溫 季,仵 峰,等.基于灰色關聯分析的遼寧省糧食產量預測模型[J].節水灌溉,2011(5):64-66.
[14] 魏中海,王建勇,夏宣炎. 糧食產量預測的因子處理和建模方法[J].華中農業大學學報,2004,23(6):680-684.
[15] 金京淑,劉 妍.吉林省糧食單產影響因素分析[J]. 吉林農業科學,2010,35(3):57-59,64.
(責任編輯 王曉芳)