摘 要:帶式輸送機是煤礦井下和地面生產系統中應用最多的一種連續運輸設備,它具有運輸能力大,運輸距離長,安全可靠等優點。隔爆變頻器,通過改變頻率和電壓來控制交流電動機轉速,對膠帶運輸機等設備進行調速控制,并實現對負載動態調節。現場實踐證明,采用隔爆變頻器后將大大提高皮帶機的安全運轉可靠性,降低機械系統損耗,減少日常維護量,節能明顯。隔爆變頻器以其特有的軟啟動特性,較高的性價比,已成為井下皮帶機拖動的發展方向。但遺憾的是在礦山應用變頻調速技術還很不普遍。主要原因是人們對變頻器的認識不夠,不能正確地應用變頻器。
關鍵詞:變頻器;煤礦;應用;故障分析
中圖分類號:F32 文獻標識碼:A DOI:10.3969/j.issn.1672-0407.2012.04.028
文章編號:1672-0407(2012)04-059-02 收稿日期:2012-03-20
1.變頻器在皮帶機拖動上的應用特點
1.1 優越的軟起動、軟停止特性
隔爆變頻器的起動、停止時間是任意可調的(0-10min),也就是說起動時的加速度和停車時的減速度任意可調,同時為了平穩起動,還可匹配其具備的S型加減速時間,這樣可將皮帶機起停時產生的沖擊減少至最小,這是其他驅動設備難以達到的。
1.2 驗帶功能
煤礦的生產運輸系統多以皮帶機為主,運輸系統檢修維護的主要工作是皮帶機的檢修維護,低速驗帶功能是皮帶機檢修的主要要求,變頻調整系統為無極調速的交流傳動系統,在空載驗帶狀態下,變頻器可調整電機工作在5~100%額定帶速范圍內的任意帶速。
1.3 平穩的重載起動特性
皮帶機在運煤過程中任意一刻都可能立即停車再重新起動,必須考慮“重載起動”能力。由于變頻器采用無速度傳感器矢量控制方式,低頻運轉可輸出1.5~2倍額定轉矩,因此最適于“重載起動”。
1.4 功率平衡特性
煤礦井下皮帶機系統多為雙滾筒驅動或多滾筒驅動,為了保證系統內的同步性能,首先,要求位于機頭的各滾筒應同步啟停,在某一電機故障時能使系統停機,同時為了保證系統的運輸能力,應盡量保證各滾筒之間的功率平衡。通過調整相應兩變頻器的速度給定來調整兩電機之間的速度差,便可以任意增大或減小兩驅動電機的電流差值的大小,因此可以通過單獨的控制系統控制各電機的電流值,通過調整各電機的速度來使各電機電流值逐步趨于平衡,這便形成了一個動態的功率平衡系統。
1.5自動調速、節電效果明顯
對應于煤礦的特殊生產條件,有時,煤的產量是極不均勻的,當然皮帶機系統的運煤量也是不均勻的,在負載輕或無負載時,皮帶機系統的高速運行對機械傳動系統的磨損浪費較為嚴重,同時電能消耗也較低速運行大的多,但因生產的需要皮帶機系統又不能隨時停車,采用單獨的控制系統對前級運輸系統的載荷、本機運輸系統的載荷進行分別測量,這樣可控制變頻器降速或提前升速。對于載荷不均的皮帶機系統,可大大節約電能。
1.6 降低膠帶張力
由于采用隔爆變頻器所產生的良好起動特性,至少可降低起動張力30%,如在初期設計選擇膠帶強度時可降低一個標號。在實際應用過程中,由于降低了起動沖擊,皮帶機機械系統的設備損耗也隨之降低,尤其托輥及滾筒的壽命成幾倍的延長。
1.7具有工頻轉換功能
為了不影響生產,萬一有故障,可以轉換到工頻旁路工作,檢修時間維護變頻器。在生產需要長期全速運行時,變頻器起動后也可選擇切換到工頻運行,這樣可延長變頻器內電解電容壽命。
2. 變頻器的故障原因及預防措施
變頻器由主回路、電源回路、IPM驅動及保護回路、冷卻風扇等幾部分組成。其結構多為單元化或模塊化形式。由于使用方法不正確或設置環境不合理,將容易造成變頻器誤操作及發生故障,或者無法滿足預期的運行效果。為防患于未然,對故障原因進行分析尤為重要。
2.1主回路電解電容故障分析
主回路主要由三相或單相整流橋、平滑電容器、濾波電容器、IPM逆變橋、限流電阻、接觸器等元件組成。其中許多常見故障是由電解電容引起。電解電容的壽命主要由加在其兩端的直流電壓和內部溫度所決定,在回路設計時已經選定了電容器的型號,所以內部的溫度對電解電容器的壽命起決定作用。電解電容器會直接 影響到變頻器的使用壽命,一般溫度每上升10 ℃,壽命減半。因此一方面在安裝時要考慮適當的環境溫度,另一方面可以采取措施減少脈動電流。采用改善功率因數的交流或直流電抗器可以減少脈動電流,從而延長電解電容器的壽命。在電容器維護時,通常以比較容易測量的靜電容量來判斷電解電容器的劣化情況,當靜電容量低于額定值的80%,絕緣阻抗在5 MΩ以下時,應考慮更換電解電容器。
2.2主回路過電流跳閘故障分析
變頻器在加速、減速或正常運行時出現過電流跳閘。首先應區分是由于負載原因,還是變頻器的原因引起的。如果是變頻器的故障,可通過歷史記錄查詢在跳閘時的電流,超過了變頻器的額定電流或電子熱繼電器的設定值,而三相電壓和電流是平衡的,則應考慮是否有過載或突變,如電機堵轉等。在負載慣性較大時,可適當延長加速時間,此過程對變頻器本身并無損壞。若跳閘時的電流,在變頻器的額定電流或在電子熱繼電器的設定范圍內,可判斷是IPM模塊或相關部分發生故障。首先可以通過測量變頻器的主回路輸出端子U、 V、W, 分別與直流側的P、N端子之間的正反向電阻,來判斷IPM模塊是否損壞。如模塊未損壞,則是驅動電路出了故障。如果減速時IPM模塊過流或變頻器對地短路 跳閘,一般是逆變器的上半橋的模塊或其驅動電路故障;而加速時IPM模塊過流,則是下半橋的模塊或其驅動電路部分故障,發生這些故障的原因,多是由于外部灰塵進入變頻器內部或環境潮濕引起。
2.3 控制回路故障分析
控制回路影響變頻器壽命的是電源部分,是平滑電容器和IPM電路板中的緩沖電容器,其原理與前述相同,但這里的電容器中通過的脈動電流,是基本不受主回路負載影響的定值,故其壽命主要由溫度和通電時間決定。由于電容器都焊接在電路板上,通過測量靜電容量來判斷劣化情況比較困難,一般根據電容器環境溫度 以及使用時間,來推算是否接近其使用壽命。電源電路板給控制回路、IPM驅動電路和表面操作顯示板以及風扇等提供電源,這些電源一般都是從主電路輸出的直流電壓,通過開關電源再分別整流而得到的。因此,某一路電源短路,除了本路的整流電路受損外,還可能影響其他部分的電源,如由于誤操作而使控制電源與公共接地短接,致使電源電路板上開關電源部分損壞,風扇電源的短路導致其他電源斷電等。一般通過觀察電源電路板就比較容易發現。
3.結束語
變頻調速技術以其特有的優越性必將在煤礦膠帶運輸系統中得到廣泛應用。筆者針對變頻器的現場常見故障進行了分析并提出了預防措施。希望讀者能通過本文了解到變頻調速器的特性,為正確使用變頻器提供借鑒意義。