摘 要:設(shè)計(jì)從學(xué)生已有的知識(shí)經(jīng)驗(yàn)出發(fā),遵循學(xué)生的認(rèn)知規(guī)律,將實(shí)物拼圖與說理論證有機(jī)結(jié)合,在動(dòng)手操作,合情推理的基礎(chǔ)上進(jìn)行嚴(yán)密的推理論證,使學(xué)生對知識(shí)的認(rèn)識(shí)從感性逐步上升到理性。
關(guān)鍵詞:三角形內(nèi)角和;感悟方法
中圖分類號:G623.5 文獻(xiàn)標(biāo)識(shí)碼:A 文章編號:1002-7661(2012)03-139-01
教學(xué)設(shè)計(jì),要本著“學(xué)貴在思,思源于疑”的思想,不斷創(chuàng)設(shè)問題情境,讓學(xué)生去實(shí)驗(yàn)、去發(fā)現(xiàn)新知識(shí)的奧妙,從而讓學(xué)生在動(dòng)手操作、積極探索的活動(dòng)中掌握知識(shí),積累數(shù)學(xué)活動(dòng)經(jīng)驗(yàn),發(fā)展空間觀念和推理能力。
一、內(nèi)容分析
“三角形內(nèi)角和”是人教版小學(xué)數(shù)學(xué)四年級下冊第五單元例5的內(nèi)容。“三角形的內(nèi)角和”是三角形的一個(gè)重要性質(zhì)。本課教學(xué)是在學(xué)生已經(jīng)掌握了三角形的特性、三邊關(guān)系及分類等知識(shí)的基礎(chǔ)上進(jìn)行的。掌握三角形的內(nèi)角和是180度這個(gè)數(shù)學(xué)結(jié)論具有重要意義,它是對三角形認(rèn)識(shí)的深化,也是掌握多邊形內(nèi)角和及其他實(shí)際問題的基礎(chǔ)。教材很重視知識(shí)的探索與發(fā)現(xiàn),安排了一系列的實(shí)驗(yàn)操作活動(dòng)。教材呈現(xiàn)教學(xué)內(nèi)容時(shí),不但重視體現(xiàn)知識(shí)的形成過程,而且注意留給學(xué)生充分進(jìn)行自主探索和交流的空間,為教師靈活組織教學(xué)提供了清晰的思路。概念的形成沒有直接給出結(jié)論,而是通過量、算、拼等活動(dòng),讓學(xué)生探索、實(shí)驗(yàn)、發(fā)現(xiàn)、討論交流、推理歸納出三角形的內(nèi)角和是180°。
二、設(shè)計(jì)理念
遵循由特殊到一般的規(guī)律進(jìn)行探究活動(dòng)是這節(jié)課設(shè)計(jì)的主要特點(diǎn)之一。學(xué)生對三角尺上每個(gè)角的度數(shù)比較熟悉,就從這里入手。先讓學(xué)生算出每塊三角尺三個(gè)內(nèi)角的和是180°,引發(fā)學(xué)生的猜想:其它三角形的內(nèi)角和也是180°嗎?接著,引導(dǎo)學(xué)生小組合作,任意畫出不同類型的三角形,用通過量一量、算一算,得出三角形的內(nèi)角和是180°或接近180°(測量誤差),再引導(dǎo)學(xué)生通過剪拼的方法發(fā)現(xiàn):各類三角形的三個(gè)內(nèi)角都可以拼成一個(gè)平角。再利用課件演示進(jìn)一步驗(yàn)證,由此獲得三角形的內(nèi)角和是180°的結(jié)論。這一系列活動(dòng)潛移默化地向?qū)W生滲透了“轉(zhuǎn)化”數(shù)學(xué)思想,為后繼學(xué)習(xí)奠定了必要的基礎(chǔ)。最后讓學(xué)生運(yùn)用結(jié)論解決實(shí)際問題,練習(xí)的安排上,注意練習(xí)層次,共安排三個(gè)層次,逐步加深。練習(xí)形式具有趣味性,激發(fā)了學(xué)生主動(dòng)解題的積極性。
三、設(shè)計(jì)流程
根據(jù)新課程標(biāo)準(zhǔn)的要求,學(xué)習(xí)活動(dòng)應(yīng)體現(xiàn)學(xué)生身心發(fā)展特點(diǎn),應(yīng)有利于引導(dǎo)學(xué)生主動(dòng)探索和發(fā)現(xiàn),因此,我在借鑒了美國教育家杜威“在做中學(xué)”的理論基礎(chǔ)上,采用了動(dòng)手操作—觀察實(shí)驗(yàn)—猜想論證的探究式教學(xué)方法,整個(gè)探究學(xué)習(xí)的過程充滿了師生之間,生生之間的交流和互動(dòng),體現(xiàn)了教師是教學(xué)活動(dòng)的組織者、引導(dǎo)者、合作者,學(xué)生才是學(xué)習(xí)的主體。并教給學(xué)生通過動(dòng)手實(shí)驗(yàn)、觀察思考、抽象概括從而獲得知識(shí)的學(xué)習(xí)方法,培養(yǎng)他們利用舊知識(shí)獲取新知識(shí)的能力。
第一、創(chuàng)設(shè)情境、激發(fā)興趣。課件出示兩個(gè)三角板它們的內(nèi)角和都是180度。(介紹內(nèi)角)是不是所有的三角形的內(nèi)角和都是180度呢?新課引入的好壞在某種程度上關(guān)系到課堂教學(xué)的成敗,把問題作為教學(xué)的出發(fā)點(diǎn),創(chuàng)設(shè)問題情境,可以激發(fā)學(xué)生學(xué)習(xí)興趣和求知欲,為發(fā)現(xiàn)新知識(shí)創(chuàng)造一個(gè)最佳的心理和認(rèn)知環(huán)境。
第二、動(dòng)手操作、探索新知。師讓學(xué)生分別畫出不同形狀的三角形。學(xué)生用量角器測量三角形三個(gè)內(nèi)角的度數(shù),并做著記錄,并統(tǒng)一填表格。(表格略)生匯報(bào)測量的結(jié)果:內(nèi)角和約等于180°。通過這種方法可以得出準(zhǔn)確的結(jié)論,也容易被學(xué)生理解和接受。通過這些過程使學(xué)生明白:探究問題有不同的方法、途徑,并且方法之間可以互為驗(yàn)證,達(dá)到結(jié)論的統(tǒng)一,從而使學(xué)生明白獲得探究問題的方法比獲得結(jié)論更為重要。
鞏固新知,拓展應(yīng)用。三角形中∠1=75°,∠2=39°,∠3=( )°。想一想:在一個(gè)直角三角形中,已知一個(gè)銳角是52度,能求出另一個(gè)銳角是多少度嗎?……通過練習(xí)讓學(xué)生從不同角度體會(huì)三角形內(nèi)角和等于180度的應(yīng)用,并在此過程中,培養(yǎng)學(xué)生靈活運(yùn)用知識(shí)的能力,和多角度、多側(cè)面分析問題習(xí)慣。
四、設(shè)計(jì)反思
《數(shù)學(xué)課程標(biāo)準(zhǔn)》指出:“有效的數(shù)學(xué)學(xué)習(xí)活動(dòng)不能單純地依賴模仿與記憶,動(dòng)手實(shí)踐、自主探索與合作交流是學(xué)生學(xué)習(xí)數(shù)學(xué)的重要方式。”整節(jié)課的教學(xué)設(shè)計(jì),條理清晰,層次清楚,學(xué)生思維活躍,教學(xué)一開始從學(xué)生熟悉的三角板抽象出特殊的三角形探討三角形的內(nèi)角和是180°,接下來很自然地引導(dǎo)學(xué)生探討所有的三角形的內(nèi)角和是不是也是180,過渡自然且有吸引力。在學(xué)習(xí)活動(dòng)的過程中,先讓學(xué)生進(jìn)行測量、計(jì)算,但得不到統(tǒng)一的結(jié)果,再引導(dǎo)學(xué)生把三個(gè)角拼在一起得到一個(gè)平角進(jìn)行驗(yàn)證。這時(shí),有部分學(xué)生在拼湊的過程中出現(xiàn)了困難,花費(fèi)的時(shí)間較長,在這里用課件再演示一遍正好解決了這個(gè)問題。練習(xí)設(shè)計(jì)也具有許多優(yōu)點(diǎn),注意到練習(xí)的梯度,并由淺入深,照顧到不同層次學(xué)生的需求,也很有趣味性。
總之,本節(jié)課的設(shè)計(jì)從學(xué)生已有的知識(shí)經(jīng)驗(yàn)出發(fā),遵循學(xué)生的認(rèn)知規(guī)律,將實(shí)物拼圖與說理論證有機(jī)結(jié)合,在動(dòng)手操作,合情推理的基礎(chǔ)上進(jìn)行嚴(yán)密的推理論證,使學(xué)生對知識(shí)的認(rèn)識(shí)從感性逐步上升到理性。以問題為載體,在探究解決問題策略的過程中學(xué)會(huì)知識(shí)、感悟方法、訓(xùn)練思維、發(fā)展能力,練習(xí)的設(shè)計(jì)起點(diǎn)低、范圍廣、有梯度,以滿足不同程度學(xué)生的需要。把課堂探究活動(dòng)延伸到課外,在課與課之間,新舊知識(shí)之間,數(shù)學(xué)與生活之間搭建橋梁,為學(xué)生長遠(yuǎn)的發(fā)展奠基。