李 翼 馮佰威
(福建船政交通職業學院1) 福州 350007) (武漢理工大學交通學院2) 武漢 430063)
從優化設計角度來看,船舶水動力性能的綜合優化是一個多學科設計優化問題.例如,意大利羅馬水池D.Peri教授利用多學科設計優化方法,完成了阻力、耐波兩學科三目標的優化問題[1-4];日本京都大學的Tahara.Y教授利用自開發集成框架,完成了阻力和推進的多學科多目標優化[5];德國S.Harries教授基于船型特征的分析,開發一套全參 數 化 的 商 業 CAD 軟 件 Friendship[6-7],利用modeFRONTIER集成優化平臺對CAD軟件(Friendship)和CFD數值求解軟件進行了集成,完成了船舶水動力性能多學科多目標優化工作,并對優化結果進行了模型試驗驗證.本文從構建實用的船體型線多學科設計優化平臺角度出發,重點闡述優化系統的重構方法.

圖1 基于CAD的船體型線多學科設計優化流程
船體型線多學科設計優化流程如圖1所示,簡述如下:(1)設計參數即為控制船型變化的優化變量;(2)船型參數化融合模塊讀入設計參數,通過母型船的融合,生成新的船型[8];(3)自動提取阻力計算、耐波性能計算及操縱性能計算所需要的數據文件,同時計算排水量及浮心的縱向位置;(4)阻力計算軟件、耐波性能計算軟件及操縱性能計算分別讀取相應數據文件,并計算相關性能指標;(5)選擇合適的優化算法,進行船型水動力性能綜合優化;(6)自動評判獲得的船體形狀是否為水動力性能最優的船型,如果不滿足要求,則再自動更改設計參數,重復上述步驟的(2)~(5),直至找到水動力性能綜合兼優的船型.上述整個流程可借助多學科設計優化集成軟件來實現.
目前國際上應用較為普遍的優化系統重構方法主要有:多學科可行方法(multidisciplinary feasible,MDF)、單學科可行方法(individual discipline feasible,IDF)、協同優化算法(collaborative optimization,CO)、并行子空間優化方法(concurrent subspace optimization,CSSO)[9].
MDF方法是解決MDO問題的最常用的方法,也稱為All-in-One方法.在這種方法中,需要提供設計變量XD,通過執行一個完全的多學科分析(MDA)確保多學科的一致性,利用XD獲得系統經過MDA分析后的輸出變量U(XD),然后利用XD和U(XD)對目標函數F(XD,U(XD))和約束函數g(XD,U(XD))進行評估.MDF優化模型表述如下.

圖2顯示了MDF方法優化過程中的數據流.式中:mij為樣條系數,通過對學科j的輸出進行Fij處理后獲得的;Fij為插補或者逼近系數;映射Eij為對樣條的評估,代表從學科j到學科i的映射.

圖2 MDF模型
根據圖2的MDF模型,建立基于MDF方法船型優化系統結構,見圖3.由圖3可以看到該方法的系統結構包括一個優化器和一個多學科分析過程,船舶的阻力分析、耐波性分析、操縱性分析是按照一種串行的順序依次執行,系統層的設計變量均為各子學科的設計變量,如船長(L)、船寬(B)、型深(D)、船型融合系數(Ci)等.所有學科的分析指標都作為系統的優化目標.采用MDF方法的這種系統結構,完成一次迭代計算需要分別執行船型融合、阻力分析、操縱性分析、耐波性分析,這種串行的方式必然要花費大量時間,難以進行有效的優化設計.

圖3 基于MDF方法的優化系統結構
單學科可行方法是E.J.Cramer等人提出來的,它提供了一種在優化時避免完全MDA分析的途徑.IDF保留了單學科的可行性,同時通過控制學科之間一致性約束,驅動單學科向多學科的可行性和最優性逼近,也就是通過耦合變量將各單個學科的分析與系統整體優化連接起來.在IDF中,代表在學科間通信或耦合的參數被作為優化變量對待,事實上它們就是單個學科分析解決問題時的設計變量.IDF優化模型表述如下.

式中:XD為設計變量;Xm為學科間耦合變量;C(X)為學科間一致性約束.在實際應用中,通常令Jj=C2j≤0.000 1,j=1,2,…,學科數.圖4為IDF方法的模型圖.

圖4 IDF模型
分析整個優化系統的結構,各性能學科之間的耦合主要體現在系統設計變量之間的緊耦合,利用IDF方法將圖所示的優化系統進行重構.具體過程為:將優化系統分解為系統層及子系統層,由于船型融合程序為各性能分析程序提供統一的計算模型,因此,將船型融合程序規劃在系統層調用,各性能分析程序規劃在子系統層調用.系統層傳遞船型參數、曲面型值等到子系統層,而子系統層計算的性能指標再反饋到系統層.重新規劃后的船型優化系統結構,見圖5.

圖5 IDF方法的優化系統結構
按照圖5所示的IDF優化系統結構,在iSIGHT集成框架上重新規劃優化問題,如圖6所示.

圖6 設計分析程序的過程集成
以46 000t油船主尺度及型線的優化設計為例,在優化過程中重點考慮了主尺度及型線的變化對水動力性能影響,經濟性暫未考慮.
1)優化的數學模型 優化變量:船長(L)、船寬(B)、型深(D)、吃水(T)、船型融合系數(Ci);目標函數,min maxHeave(垂蕩峰值最小),min maxPitch(縱搖峰值最小),min Rave(單位排水量總阻力最小),max K/T(諾賓指數最大).
2)約束條件 (1)GM/B≥0.03,GM 為初穩性高度;(2)浮力平衡,Displacement=DWT+LWT.Displacement為排水量,LWT 為空船重量,DWT 為載重量;(3)艙容約束,CV/CV0≥1.
……
3)指標計算 (1)耐波計算,由自編切片程序計算垂蕩及縱搖的幅值;(2)操縱性計算,由自編程序計算諾賓指數;(3)阻力計算,采用商業軟件Shipflow計算興波阻力,粘性阻力采用Holtrop方法估算.
4)優化算法 選擇多目標遺傳算法(NSGA),種群數設置為50,遺傳代數設置為50.
為使兩種系統重構方法具有可比性,作者分別采用MDF方法及IDF方法對本例進行了優化.由于本例的優化屬于多目標優化問題,因此優化后將獲得一系列的非劣解,也即Pareto解集,如圖7、圖8所示.從Pareto解集中可選擇各性能指標均明顯改善的解,見表1及表2.

圖7 基于MDF方法獲得Pareto解集

圖8 基于IDF方法獲得的Pareto解集

表1 基于MDF方法的船型優化結果

表2 基于IDF方法的船型優化結果
1)采用不同的系統重構方法進行船型水動力性能綜合優化,均能有效提高船型的設計質量.由表1和表2可知,各水動力性能指標均比母型有了明顯的提高.但值得說明的是,盡管兩類優化的初始條件相同,但最終獲得的優化結果卻有差別,這與遺傳算法屬于概率性搜索算法有關.
2)對比兩類不同的優化結果可知,基于MDF方法的船型優化需要更長的優化時間,這與各性能計算程序串行執行有關.而基于IDF方法的船型優化采用的是并行計算的系統架構,故其需要的優化時間會更短.
3)綜合以上2點,對船型水動力性能綜合優化而言,采用IDF方法對優化系統進行重構無疑是一種理想的方法.本文的研究為船型水動力性能多學科設計優化平臺走向實用化打下了基礎.
[1]PERI D,ROSSETTI M,CAMPANA E F.Design optimization of ship hulls via CFD techniques[J].Journal of Ship Research,2001,45(2):141-149.
[2]PERI D,CAMPANA E F.Multidisciplinary design optimzation of a naval combatant[J].Journal of Ship Research,2003,47(1):1-12.
[3]PERI D,CAMPANA E F.High-fidelity models and multiobjective global optimization algorithms in simulation-based design[J].Journal of Ship Research,2005,49(3):159-175.
[4]PERI D,CAMPANA E F,DATTOLA R.Multidisciplinary design optimization of a naval frigate[C]//10th AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization,Albany,NY,2004.
[5]TAHARA Y,TOHYAMA S.CFD-based multi-objective optimization method for ship design[J].International Journal For Numerical Methods In Fluids Int.J.Numer.Meth.Fluids,2006,52:499-527.
[6]HARRIES S,ABT C.Formal hydrodynamic optimization of a fast monohull on the basis of parametric hull design[C]//5th International Conference on Fast Sea Transportation,Seattle,WA,1999.
[7]HARRIES S,VALDENAZZI F,ABT C,et al.Investigation on optimization strategies for the hydrodynamic design of fast ferries[C]//6th International Conference on Fast Sea Transportation,Southhampton,UK,2001.
[8]馮佰威,劉祖源.多學科設計優化技術在船舶設計中的應用[J].中國造船,2009,50(4):109-116.
[9]王振國,陳小前.飛行器多學科設計優化理論與應用研究[M].北京:國防工業出版社,2006.