







【學習內容】
人教版《義務教育課程標準實驗教科書·數學》五年級上冊第88~89頁。
【設計理念】
《梯形的面積》是在學生學習了平行四邊形和三角形面積計算的基礎上進行學習的。多數學生學習了平行四邊形和三角形面積的計算之后,會通過各種不同的渠道獲取梯形面積的計算公式,但很少有學生會去思考梯形面積的計算公式是怎樣推導出來的。學生經歷了平行四邊形和三角形的面積公式的推導過程的學習后,已經知道了要把梯形轉化為已經學過的圖形進行推導。那么,用什么材料和方法引導學生進行探索呢?由于推導梯形面積的計算公式的操作方法與途徑可以是多樣的,所以不同的老師處理的方法也會有所不同。基于學習材料準備簡單且有效的考慮,筆者采用讓學生先在方格圖里“畫一畫”再推導梯形面積的計算公式的教學策略。
【目標定位】
1.引導學生在參與操作探索的過程中,發現并掌握梯形的面積計算方法,培養學生的“再創造”能力與空間觀念。
2.結合數學“再發現”過程,培養學生觀察、分析、比較、判斷、概括、推理等思維能力,感受知識間的類比遷移、轉化等思想方法。
3.體驗數學“再發現”的樂趣,讓學生獲得個性化的數學發展。
【課例回放】
一、溫故引新,尊重起點
1.回顧三角形面積公式的推導過程
師:同學們,我們已經學習了三角形面積的計算。大家回憶一下,三角形面積的計算公式是怎樣推導出來的?(學生回答,課件演示)
生1:把兩個完全一樣的三角形拼成一個平行四邊形,這個平行四邊形的底等于三角形的底,它的高等于三角形的高。所以,三角形的面積等于底乘高除以2。
生2:可以沿著三角形兩邊中點的連線剪開,拼成一個平行四邊形,這個平行四邊形的底等于三角形的底,它的高只有三角形高的一半。因此,三角形的面積等于底乘高除以2。
生3:還可以沿三角形兩邊中點向底邊作垂線再剪下來,拼成一個長方形,這個長方形的長等于三角形底的一半,它的寬相當于三角形的高。所以,三角形的面積等于底乘高除以2。
生4:還可以用折疊的方法,把三角形折成一個長方形,這個長方形的面積是三角形面積的一半,長和寬分別是三角形底和高的一半,也能得到三角形面積的計算公式。
師:雖然三角形面積公式的推導方法有所不同,但都是先把它轉化成已學過的圖形,找到它們之間的聯系再推導。
2.出示課題,了解起點
師:今天我們繼續用轉化的方法來研究梯形的面積,誰知道梯形的面積公式?
(多數學生舉手了)
生:梯形面積=(上底+下底)×高÷2。
師:如果用a、b、h分別表示梯形的上底、下底與高,用S表示面積,梯形面積的計算公式還可以怎么表示?
生:S梯形=(a+b)×h÷2。
二、操作探究,探索新知
1.猜想梯形面積公式可能的推導過程
師:誰愿意來猜一猜梯形面積的計算公式可能是怎樣推導出來的?
生1:用兩個完全一樣的梯形拼成一個平行四邊形進行推導。
生2:用一個梯形也能轉化成平行四邊形進行推導。
生3:把一個梯形分割成兩個三角形進行推導。
生4:也可以把一個梯形轉化成一個三角形推導。
生5:還可以把一個梯形轉化成長方形進行推導。
師:同學們對梯形面積的計算公式推導作了大膽猜想,但光有猜想是不夠的,我們還要進行探索研究,通過事實來說明。
2.提供材料,操作探究
(1)用兩個完全一樣的梯形推導梯形面積的計算公式。
師:剛才同學們提出了用兩個完全一樣的梯形拼成一個平行四邊形進行推導,但是老師今天只準備了一個梯形怎么辦?(出示圖1)
生:再畫一個同樣的梯形進行推導。
師:請先想象一下,然后拿出研究材料畫一畫,再推導面積公式。
(學生研究,然后匯報)
生:兩個完全相同的梯形拼成一個平行四邊形,這個平行四邊形的底等于梯形的(上底+下底),平行四邊形的高等于梯形的高,每個梯形的面積等于這個平行四邊形面積的一半,所以“梯形面積=(上底+下底)×高÷2”。(出示圖2)
師:“(上底+下底)×高”表示什么?求梯形面積為什么還要除以2呢?
生:“(上底+下底)×高”求出這個平行四邊形的面積,這個平行四邊形是由兩個完全一樣的梯形拼成的,求其中一個梯形的面積還要除以2。
師:通過剛才的學習,我們發現了用兩個完全相同的梯形拼成一個平行四邊形確實能推導出梯形面積的計算公式。但是也有同學猜想用一個梯形也能轉化成平行四邊形、三角形、長方形進行推導,你們覺得可以嗎?
(2)用一個梯形推導梯形面積的計算公式。
(學生再次研究,然后匯報)
生1:我們沿著梯形兩腰中點的連線將梯形剪開,轉化成一個平行四邊形。平行四邊形的底等于梯形的上底與下底的和,平行四邊形的高只有梯形高的一半,(上底+下底)×(高÷2)求出的是這個平行四邊形的面積,也就是梯形的面積。因此,梯形的面積公式=(上底+下底)×高÷2(如圖3)。
師:還有哪個小組也是轉化成平行四邊形進行推導的?
生2:我們把梯形轉化成長方形進行推導,長方形也是特殊的平行四邊形。我們沿著梯形兩腰中點作垂線,把旁邊兩個小三角形進行分割、旋轉,拼成一個長方形。這個長方
形的長等于梯形的上底與下底的和的一半,寬等于梯形的高,也推導出了梯形面積的計算公式(如圖4)。
師:為什么長方形的長等于梯形的上底與下底的和的一半?
生:我們是用數格子的方法