999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

最大度為6且不含5-圈和相鄰4-圈的平面圖是7-全可染的*

2011-11-20 05:54:05張靜雯

張靜雯

(浙江師范大學 數理與信息工程學院,浙江 金華 321004)

最大度為6且不含5-圈和相鄰4-圈的平面圖是7-全可染的*

張靜雯

(浙江師范大學 數理與信息工程學院,浙江 金華 321004)

運用Discharging方法,證明了最大度為6且不含5-圈和相鄰4-圈的簡單平面圖是7-全可染的.所得結果改進了現有文獻的相關結果.

平面圖;全染色;最大度;5-圈;相鄰4-圈

0 引 言

本文所研究的圖是有限簡單無向圖,文中未加定義的術語和記號參閱文獻[1].

如果圖G可嵌入到平面上, 使得邊僅在端點處相交,則稱圖G是可平面圖;可平面圖在平面內的一個嵌入叫平面圖.對于平面圖G,分別用V,E,F,Δ和δ表示平面圖G的頂點集、邊集、面集、最大度和最小度.k-圈是指長度為k的圈;兩個圈相鄰是指該兩個圈至少有1條公共邊.

設平面圖G=(V,E),若映射φ:V∪E→{1,2,…,k},使得對任意相鄰或相關聯的元素x,y∈V∪E都有φ(x)≠φ(y),則稱G是k-全可染的.顯然,給每一個圖進行全染色至少要用Δ+1種顏色.文獻[2-3]猜想:任何簡單圖G都是(Δ+2)-全可染的.這一猜想就是著名的全染色猜想(Total Coloring Conjecture),簡記為 TCC.

即使對于平面圖,TCC也未得到完整的證明.唯一未解決的困難情形是Δ=6.這方面的一些研究結果可參見文獻[4-8].人們期望得到關于簡單平面圖全染色的最好結果,即證明平面圖是(Δ+1)-全可染的.到目前為止,已經證明了在大多數情況下,簡單平面圖是(Δ+1)-全可染的.文獻[9-11]分別證明了Δ≥11,Δ=10和Δ=9的平面圖是(Δ+1)-全可染的;文獻[12]證明了Δ≥7且不含4-圈的簡單平面圖是(Δ+1)-全可染的.本文研究的是關于Δ=6的平面圖的全染色問題,得到如下結果:

定理1設G是Δ=6且不含5-圈和相鄰4-圈的平面圖,則圖G是7-全可染的.

1 定理1的證明

假設定理1不成立,并設圖G是定理1的一個使σ(G)=|V|+|E|最小的反例,即Δ(G)=6且不含5-圈和相鄰4-圈,它本身不是7-全可染的,但它的每一個真子圖都是7-全可染的,則圖G有以下幾個性質:

圖1 可約構型

斷言1[9]圖G是2-連通的.

δ≥2,且因為圖G是2-連通的,所以G的每個面的邊界都是圈.

把度數為k的點叫做k-點;類似地,把度數至少為k的點叫做k+-點;把度數至多為k的點叫做k--點.(i,j)-邊是指此邊的2個端點的度數分別為i和j;(i,j,k)-面是指此3-面上的點的度數分別為i,j,k.

斷言2[13]設xy∈E.若d(x)≤3,則d(x)+d(y)≥Δ+2=8.

特別地,G中2-點只與6-點相鄰,3-點只與5+-點相鄰.

斷言3[13]圖G中所有(2,6)-邊的導出子圖是一個森林.

斷言4G不含圖1所示的結構.其中標記為·的點在G中沒有其他鄰點.

假設G有如圖1(b) 所示的子結構.由G的極小性可知,G′=G-u2u3是7-全可染的.假設φ是G′的一個7-全染色,抹去u2和u5的色,則得到圖G的一個部分全染色,其中未染的元素是u2u3,u2和u5.

若7∈{φ(u4u5),φ(u5u6)},則當φ(u4u5)=7時,如果φ(u5u6)≠φ(u3u4),那么交換u3u4與u4u5的色,再將φ(u3u4)染給u2u3;如果φ(u5u6)=φ(u3u4),那么交換u1u2與u1u3的色,再將φ(u1u3)染給u3u5,φ(u3u5)染給u2u3;當φ(u5u6)=7時,則交換u1u2與u1u3的色,如果φ(u4u5)≠φ(u1u3),那么再將φ(u1u3)染給u3u5,φ(u3u5)染給u2u3;如果φ(u4u5)=φ(u1u3),那么交換u3u4與u4u5的色,再將φ(u3u4)染給u2u3;最后,重染u2和u5,又得G是7-全可染的,矛盾.

假設G有如圖1(c)所示的子結構.由G的極小性可知,G′=G-u2u3是7-全可染的.假設φ是G′的一個7-全染色,抹去u2和u5的色,則得到圖G的一個部分全染色,其中未染的元素是u2u3,u2和u5.

2 權轉移

權轉移規則如圖2 所示.

圖2 權轉移規則

R1:轉向2-點的權

與2-點相鄰的2個6-點都向2-點轉移權1.

R2:轉向3-面的權

R2.2:若3-面不與3--點相關聯,則3-面上的3個4+-點都向3-面轉移權1.

R3:轉向4-面的權

R3.1:若4-面與2個3--點相關聯,則4-面上的2個5+-點都向4-面轉移權1;

首先考察面的新權.

由圖G不含5-圈知圖G不含5-面,故無需驗證5-面的新權.

設f為6+-面.由權轉移規則知f既不轉出權也不接受權,因此ch′(f)=ch(f)=d(f)-6≥0.

綜上所述,對任意的面f∈F,ch′(f)≥0.

其次考察頂點的新權.

設v為2-點.由斷言2和R1知,ch′(v)=ch(v)+1×2=-2+2=0.

設v為3-點.由權轉移規則知v既不轉出權也不接受權,即ch′(v)=ch(v)=0.

下面用t表示與v相關聯的3-面的個數.

設v為6-點.

用n表示與v相鄰的2-點個數,顯然,n≤6.與6-點相鄰的2-點分布情況如圖3所示.以下分2種情形討論:

圖3 與6-點相鄰的2-點分布情況(1≤n≤6)

最復雜的為t=0.用m表示與v相關聯的4-面個數,由圖G不含5-圈和相鄰4-圈知m≤3.

注2由斷言3和圖G不含5-圈知,與v關聯且關聯的2個與v相鄰的2-點的面是6+-面.

n=6.由注1和注2知,ch′(v)≥ch(v)-1×6=0.

n=5.由注2和圖G不含相鄰4-圈知v至少關聯5個6+-面,且m≤1,從而根據注1,ch′(v)≥ch(v)-1×5-1=0.

n=4.由注2和圖G不含相鄰4-圈知m≤2,從而根據注1,ch′(v)≥ch(v)-1×4-1×2=0.

n=3.由注2和圖G不含相鄰4-圈知m≤3,從而根據注1,ch′(v)≥ch(v)-1×3-1×3=0.

n=2.由注2和圖G不含相鄰4-圈知m≤3,從而根據注1,ch′(v)≥ch(v)-1×2-1×3≥0.

n=1.由圖G不含相鄰4-圈知m≤3,從而根據注1,ch′(v)≥ch(v)-1-1×3≥0.

至此,對任意的x∈V∪F,ch′(x)≥0已得到驗證.定理1得證.

[1]Bondy J A,Murty U S R.Graph theory with applications[M].London:Macmillan Press,1976.

[2]Vizing V G.Some unsolved problems in graph theory[J].Uspekhi Mat Nauk,1968,23(6):117-134.

[3]Behzad M.Graphs and their chromatic numbers[D].East Lansing:Michigan State University,1965.

[4]Kostochka A V.The total coloring of a multigraph with maximal degree 4[J].Discrete Math,1977,17(2):161-163.

[5]Kostochka A V.The total chromatic number of any multigraph with maximal degree five is at most seven[J].Discrete Math,1996,162(1/2/3):199-214.

[6]Rosenfeld M.On the total coloring of certain graphs[J].Israel J Math,1971,9(3):396-402.

[7]Vijayaditya N.On total chromatic number of a graph[J].London Math Soc,1971,3(2):405-408.

[8]Yap H P.Total coloring of graphs[M].Belin:Spring-Verlag,1996.

[9] Borodin O V,Kostochka A V,Woodall D R.Total coloring of planar graphs with large maximum degree[J].Graph Theory,1997,26(1):53-59.

[10]Wang Weifan.Total chromatic number of planar graphs with maximum degree ten[J].Graph Theory,2007,54(1):91-102.

[11]Kowalik L,Sereni J S,krekovski R.Total coloring of plane graphs with maximum degree nine[J].SIAM Discrete Math,2008,22(4):1462-1479.

[12]Hou Jianfeng,Liu Guizhen,Cai Jiansheng.List edge and list total coloring of planar graphs without 4-cycles[J].Theoret Comput Sci,2006,369:250-255.

[13]Borodin O V.On the total coloring of planar graphs[J].Reine Angew Math,1989,394(1):180-185.

Onthe7-total-colorabilityofplanegraphswithmaximumdegree6without5-cyclesandadjacent4-cycles

ZHANG Jingwen

(CollegeofMathematics,PhysicsandInformationEngineering,ZhejiangNormalUniversity,JinhuaZhejiang321004,China)

By using the discharging method, it was proved that plane graphs with maximum degree 6 and without 5-cycles and adjacent 4-cycles were 7-totally-colorable. This improved the known results in literatures.

plane graph; total coloring; maximum degree; 5-cycles; adjacent 4-cycles

1001-5051(2011)03-0272-05

O157.5

A

*收文日期:2010-01-02;

2010-09-13

浙江省自然科學基金資助項目(Y6090699)

張靜雯(1986-),女,陜西西安人,碩士研究生.研究方向:運籌學與控制論;圖論.

(責任編輯 陶立方)

主站蜘蛛池模板: 欧美午夜久久| 六月婷婷综合| 播五月综合| 亚洲日韩AV无码一区二区三区人| 亚洲国产日韩视频观看| 久久毛片免费基地| 欧美天堂在线| 国产一区二区丝袜高跟鞋| 一区二区三区国产| 色综合狠狠操| 婷婷丁香在线观看| 日韩精品一区二区三区视频免费看| 嫩草国产在线| 亚洲一区二区约美女探花| 97se亚洲综合| 波多野结衣第一页| 国产污视频在线观看| 午夜欧美理论2019理论| 色天堂无毒不卡| 亚洲视频欧美不卡| 欧美亚洲日韩中文| 国产精品久线在线观看| 国产免费网址| 一级毛片免费高清视频| 亚洲精品无码av中文字幕| 一本大道香蕉中文日本不卡高清二区| 亚洲Av综合日韩精品久久久| 91成人免费观看| 精品福利视频导航| 亚洲一区二区三区麻豆| 欧美狠狠干| 亚洲一区二区三区麻豆| 免费看美女毛片| 99在线观看精品视频| 爱爱影院18禁免费| 亚洲不卡无码av中文字幕| 综合成人国产| 福利一区三区| 亚洲精选高清无码| www.亚洲一区二区三区| 在线亚洲小视频| 欧美亚洲激情| 无码高潮喷水专区久久| 精品午夜国产福利观看| 一级毛片免费的| 一本久道热中字伊人| 国产精彩视频在线观看| 亚洲成人福利网站| 国产亚洲精品97AA片在线播放| 一级做a爰片久久免费| 99热这里只有精品5| 国产全黄a一级毛片| 亚洲成人在线免费| 国内精品久久久久久久久久影视 | 日本成人在线不卡视频| 婷婷综合在线观看丁香| 亚洲AⅤ无码日韩AV无码网站| 日本三级黄在线观看| 亚洲第一区欧美国产综合| 成人在线观看不卡| 国产成人精品免费视频大全五级| 一级毛片在线免费视频| 国产成人精品免费视频大全五级| 狠狠色婷婷丁香综合久久韩国| 日本91在线| 亚洲一级毛片| 亚洲VA中文字幕| 亚洲色图在线观看| 99热这里只有精品久久免费| 亚洲免费黄色网| 日韩在线第三页| A级全黄试看30分钟小视频| 中文字幕亚洲综久久2021| 亚洲91在线精品| 亚洲人成网站日本片| 亚洲视频欧美不卡| 日本91视频| 亚洲男人在线| 国产免费好大好硬视频| 香蕉蕉亚亚洲aav综合| 欧美日韩午夜| 五月天综合网亚洲综合天堂网|