王 媛,趙 斌,劉孟雨,馬圓圓,栗 娜(北京物資學(xué)院,北京101149)
隨著我國經(jīng)濟的飛速發(fā)展和加入WTO,市場競爭已越來越激烈,尤其是進入21世紀(jì)后,企業(yè)建立競爭優(yōu)勢的關(guān)鍵,已由節(jié)約原材料的“第一利潤源泉”、提高勞動生產(chǎn)率的“第二利潤源泉”,轉(zhuǎn)向建立高效的物流系統(tǒng)的“第三利潤源泉”。在經(jīng)濟日益全球化的今天,現(xiàn)代物流作為第三利潤源和第三產(chǎn)業(yè)的重要組成部分,正受到日益廣泛的重視,并面臨著前所未有的發(fā)展機遇。因此現(xiàn)代物流的快速發(fā)展促進了配送中心的建設(shè)[1]。
配送中心在整個物流系統(tǒng)中處于運輸節(jié)點的位置,它的合理位置對于優(yōu)化運輸路線、降低運輸成本、提高運輸效率等有很重要的作用。在配送中心選址規(guī)劃過程中,常用的方法有交叉中值模型、精確重心法、覆蓋模型、P-中值模型等。
本文考慮了雙配送中心選址問題,結(jié)合重心法,提出了一種簡單的選址方法。即在一個較大的區(qū)域內(nèi)選擇兩個地點建立配送中心。假設(shè)已知某區(qū)域內(nèi)有n個需求點,每個需求點所需的貨物量、價值權(quán)重及每個需求點在坐標(biāo)平面上的位置、城市距離系數(shù)等,如何選出兩個配送中心地點,使所選配送中心滿足各個需求點的容量限制[2]。
已知n個需求點v1,v2,…,vn,第i個需求點的位置(xi,yi)及需求量qi(i=1,2,…,n),第i個需求點和第j個需求點之間的距離為dij(i=1,2,…,n;j=1,2,…,n),假定每個配送中心的容量均有上限Q。如何在n個需求點中選擇兩個建立配送中心,才能在滿足顧客需求的前提下使總成本最低?
第一步:找出基點
根據(jù)每個備選的配送中心的坐標(biāo),首先計算所有的每兩個需求點間的直線距離,由于城市之間的距離不能由單一的兩點間距離計算,因此引入城市距離系數(shù),即得出實際距離=直線距離*城市距離系數(shù),并從小到大排序,選出距離最大的兩個點作為兩個基點,即這兩個點被分在不同的兩個區(qū)域內(nèi)。
第二步:劃分出兩個區(qū)域
算出除基點外的每個點分別到兩個基點的距離的差值,把差值從大到小排序,從差值最大的開始,把該點歸入離它最近的基點,由于此問題為容量限制的問題,因此把該點的需求貨物重量歸入所在基點的需求貨物重量中,以此類推,直到其中一邊的需求貨物重量之和將近滿足每個配送中心的最大容量且不能再容納下一個備選點的貨物重量。把剩余的備選點歸入另一個基點中。由此,可以把所有選點分到兩個區(qū)域內(nèi)。
第三步:利用重心法初始選址,幷確定最終選址地點
利用求物體系統(tǒng)重心的方法來確定物流配送中心的位置。

其中,X,Y分別為所確定的重心的橫縱坐標(biāo),Xi,Yi分別為各個地點的橫縱坐標(biāo),wi表示所需貨物重量的權(quán)重,即每個需求地的貨物量,hi表示城市距離系數(shù)[2]。
得出重心,并根據(jù)就近原則,選出離重心點最近的備選地點作為最終選址地點。
本文選取文獻[7]中的朝陽柴油機廠配送中心選址問題的數(shù)據(jù)進行應(yīng)用計算。朝陽柴油機廠的供應(yīng)商遍布全國各地,其供貨時間和數(shù)量相對比較隨機,但由于一些地點的供貨都是小批量的,因而無法形成規(guī)模效應(yīng),這就使得朝柴廠在運輸方面也需要大量的投資。在這種情況下,選擇一個配送中心作為自己供貨的暫存區(qū)以應(yīng)對長期發(fā)展就顯得尤為重要。因為朝陽柴油機廠供應(yīng)商以長三角地區(qū)的居多,所以配送中心的選擇以長三角地區(qū)為主。
表1為朝陽柴油機廠的主要需求者的需貨量、城市距離系數(shù)及城市坐標(biāo)等信息。

表1
假定有15個需求點,各個需求點的需求量已知,由于受客觀條件的限制,每個配送中心的最大容量為580 000,現(xiàn)欲在這15個需求點中選擇兩個建立配送中心,為各個需求點提供服務(wù),并使總費用最低。假設(shè)每個需求點只能由一個配送中心提供服務(wù)。
第一步:找出基點
(1)計算所有的每兩個需求點間的直線距離,以及實際距離(實際距離=直線距離*城市距離系數(shù)),并把實際距離從小到大排序,找出距離最大的兩個點,作為兩個基點,為蚌埠和臺州。
(2)確定蚌埠和臺州為兩個基點,分別代表區(qū)域A和B后,找出其他點到這兩個點的距離差值及絕對值。
第二步:劃分出兩個區(qū)域
(1)根據(jù)距離差值的絕對值的排序,依次把其他各點根據(jù)就近原則劃分到兩個區(qū)域內(nèi)

距離差值的絕對值 距離差值的絕對值蕪湖 6 1.7 0 5 3 4 無錫 3 4.1 4 6 5 3 0南京 6 1.3 5 7 3 5 南通 2 4.8 8 2 1 8 0儀征 5 6.9 9 9 9 2 蘇州 1 0.6 5 0 1 0 0寧波 5 2.2 9 6 7 5 湖州 4.6 2 8 0 0 2 0舟山 4 9.5 2 7 5 0 上海 3.8 0 2 4 6 6 0安慶 4 8.5 5 4 7 8 臨安 2.4 7 9 3 3 4 0余姚 4 0.2 4 3 5 1
即得到將要劃入兩個區(qū)域的備選地:

(2)調(diào)整
由于此題為容量限制的問題,且每個配送中心的最大容量為580 000,A區(qū)域價值重量合計超過最大容量,因此對問題進行調(diào)整,將湖州劃入B區(qū)域。即:

滿足容量限制,調(diào)整結(jié)束。
第三步:利用重心法初始選址
利用離散重心法,公式為:

其中,X,Y分別為所確定的重心的橫縱坐標(biāo),Xi,Yi分別為各個地點的橫縱坐標(biāo),wi表示所需貨物重量的權(quán)重,即每個需求地的貨物量,hi表示城市距離系數(shù)。
求出所劃分后的區(qū)域內(nèi)的初步選址點:A區(qū)域重心為(149.5533,65.40869);B區(qū)域重心為(164.7523,53.25907)。找出離重心最近的備選地點作為最終選址地點,分別為南京和余姚(如圖1所示)。

本文結(jié)合實際問題研究了帶容量限制的雙配送中心選址問題,提出了切實可行的計算方法。首先對于帶容量限制的問題,不考慮容量限制,利用配送中心間距離對需求點進行區(qū)域劃分,將各需求點劃分到一個合理的區(qū)域內(nèi);然后考慮各個區(qū)域的需求量是否滿足容量限制,若不滿足則進行調(diào)整。雖然調(diào)整過程中,各個區(qū)域的中心會發(fā)生改變,但是由于調(diào)整時首先考慮的是離其它區(qū)域最近的點,因此調(diào)整過程不會對目標(biāo)函數(shù)值造成太大的影響,之后利用重心法確定初始選址地點,找出離重心點最近的備選點作為最終選址地點。
[1]蔡臨寧.物流系統(tǒng)規(guī)劃——建模及實例分析[M].北京:機械工業(yè)出版社,2008.
[2]魯曉雪,李菲,叢茗,等.雙配送中心選址方法[J].物流科技,2010(2):29-33.
[3]左元斌.物流配送中心——選址問題的理論、方法與實踐[M].北京:中國鐵道出版社,2008:28-82,135-144.
[4]張曉川.物流配送系統(tǒng)規(guī)劃[M].北京:中國水利水電出版社,2008:44-51,199-202.
[5]高自友,孫會君.現(xiàn)代物流與交通運輸系統(tǒng)——模型與方法[M].北京:人民交通出版社,2005:128-177.
[6]王非,徐渝,李毅學(xué).離散設(shè)施選址問題研究綜述[J].運籌與管理,2006(10):64-69.
[7]魯曉雪,李珍萍.帶容量限制的多配送中心選址方法[J].物流技術(shù),2010,29(6):67-70.