陳陟陽(yáng),張俊伶,馬小茗,易微微,陳顯達(dá),石桂英,鞠振宇
(中國(guó)醫(yī)學(xué)科學(xué)院,北京協(xié)和醫(yī)學(xué)院,醫(yī)學(xué)實(shí)驗(yàn)動(dòng)物研究所,衛(wèi)生部人類疾病比較醫(yī)學(xué)重點(diǎn)實(shí)驗(yàn)室,國(guó)家中醫(yī)藥管理局人類疾病動(dòng)物模型三級(jí)實(shí)驗(yàn)室,北京 100021)
W IP1(wild-type p53-induced phosphatase)是一種核蛋白,為絲氨酸/蘇氨酸特異蛋白磷酸酶2C型家族(serine/threonine specific protein phosphatase type 2C,PP2C)中的一員,由 PPM1D (protein phosphatase magnesium-dependent 1 delta)基因編碼,介導(dǎo)眾多DNA損傷應(yīng)急信號(hào)通路[1]。W IP1表達(dá)非常廣泛,通過(guò) RT-PCR證實(shí)在小鼠胚胎和成體幾乎各個(gè)臟器組織均有 W IP1 mRNA的表達(dá),包括乳腺、子宮、卵巢、腎上腺、皮膚、肝臟和睪丸等組織均檢測(cè)到該基因的表達(dá),特別在睪丸中表達(dá)量明顯增高。缺失WIP1的小鼠能夠正常生產(chǎn),但是卻顯示出一系列的產(chǎn)后缺陷,主要體現(xiàn)在雄性小鼠發(fā)育不全,生殖器官萎縮,W IP1-/-雄性小鼠的睪丸發(fā)育不全,生育力下降及生命期限縮短。缺失 WIP1小鼠表現(xiàn)出對(duì)病原體易感性增強(qiáng)[2]。WIP1基因在許多人類癌癥,特別是乳腺癌中過(guò)表達(dá),而敲除PPM1D基因的小鼠能夠抵抗乳腺癌的發(fā)生,暗示W(wǎng) IP1可能是一個(gè)致癌基因[3,4]。在 APCmin腸癌小鼠模型中,W IP1基因缺失通過(guò)促進(jìn)小腸干細(xì)胞的凋亡,調(diào)控小腸干細(xì)胞穩(wěn)態(tài),有效抑制腫瘤生成[5]。在小鼠胸腺發(fā)育中,由于W IP1基因缺失導(dǎo)致 P53的持續(xù)激活,致使T細(xì)胞發(fā)育障礙[6]。.在神經(jīng)系統(tǒng)中,WIP1通過(guò)P53依賴途徑調(diào)控神經(jīng)干祖細(xì)胞的自我更新[7]。此外在對(duì)衰老的研究中WIP1基因同樣引起關(guān)注,伴隨著衰老的進(jìn)行W IP1基因的表達(dá)降低,導(dǎo)致胰島 β細(xì)胞自我更新及增值能力下降[8]。綜合前期結(jié)果提示,W IP1基因參與細(xì)胞增殖、凋亡等眾多信號(hào)通路,對(duì)DNA損傷修復(fù)[9]、癌癥的發(fā)生、細(xì)胞穩(wěn)態(tài)的調(diào)控[10]及抗衰老起重要的作用。然而,目前還沒(méi)有研究報(bào)道過(guò)W IP1基因?qū)撬鐱細(xì)胞發(fā)育的影響。為了研究W IP1基因是否直接參與調(diào)控成年小鼠B細(xì)胞及T細(xì)胞的發(fā)育,我們利用基因敲除小鼠及流式細(xì)胞術(shù)為工具研究W IP1基因?qū)Τ赡晷∈驜細(xì)胞及T細(xì)胞發(fā)育的影響。
1.1 PCR方法鑒定W IP1-/-小鼠基因型
小鼠在出生10 d用剪趾法標(biāo)記,收集剪下的組織,裂解組織提取基因組DNA,PCR鑒定基因型,反應(yīng)條件:94℃預(yù)變性3 min;變性94℃ 30 s,退火61℃30 s,延伸72℃ 30 s,40個(gè)循環(huán);72℃延伸10 min。鑒定 引 物 為 Wip1 WT primer1: 5'-GACAGTCCTGTGCCAAAATGCT-3';Wip1 WT primer2:5'-GGTGACTTGATTGGTGGTGTAGA-3';Wip1 KO primer A: 5'-GCAGGGCTGTTTGTGGTGCT-3';Wip1 KO primer B:5'-GCATGCTCCAGACTGCCTT-3',W IP1 -/-產(chǎn)物長(zhǎng)度176 bp,WT產(chǎn)物長(zhǎng)度236 bp,PCR試劑購(gòu)自上海生工生物技術(shù)有限公司,中國(guó)(圖1)。
1.2 流式細(xì)胞術(shù)分析
1.2.1 骨髓單細(xì)胞懸液制備:實(shí)驗(yàn)使用成年3月齡129小鼠,頸椎脫臼犧牲小鼠,取雙腿脛骨、股骨用預(yù)冷的PBS沖出骨髓腔的骨髓細(xì)胞,吹打成單細(xì)胞懸液,過(guò)濾、計(jì)數(shù),調(diào)整濃度至1×108cell/m L。本實(shí)驗(yàn)使用小鼠均來(lái)自北京協(xié)和醫(yī)學(xué)院比較醫(yī)學(xué)中心,動(dòng)物生產(chǎn)許可證號(hào):SCXK(京)2009-0007,動(dòng)物使用許可證號(hào):SYXK(京)2005-0001。
1.2.2 骨髓B細(xì)胞及粒細(xì)胞染色方案 取10 uL全骨髓細(xì)胞懸液置于96孔板一孔中,加入 B220/ PE-cy7(Biolegend)、CD11b/APC-cy7(Biolegend)抗體,冰上避光孵育 30 min,加入 200 uL staining medium(PBS+1%BSA),400 g/m in,離心5 m in,棄上清后用200 uLstaining medium重新懸浮細(xì)胞,200目濾網(wǎng)過(guò)濾至流式管中準(zhǔn)備流式分析,每只小鼠收集1 ×105細(xì)胞,計(jì)算 B220/PE-cy7陽(yáng)性細(xì)胞及CD11b-APC-cy7陽(yáng)性細(xì)胞所占的比例。
1.2.3 骨髓B細(xì)胞發(fā)育染色方案 取10 uL全骨髓細(xì)胞懸液至于 96孔板一孔中,加入 IgD/FITC (Biolegend)、CD43/Percp-cy5.5(Biolegend)、B220/ PE-cy7(Biolegend)、IgM/APC(Biolegend)抗體,冰上避光孵育30 min,加入200 uL staining medium(PBS +1%BSA),400 g/m in離心 5 m in,棄上清后用200 uL staining medium重新懸浮細(xì)胞,200目濾網(wǎng)過(guò)濾至流式管中準(zhǔn)備流式分析,每只小鼠收集1× 105細(xì)胞,計(jì)算B220+CD43-IgM-IgD-(Pre-B);B220+CD43-IgM+IgD-(immature-B);B220+CD43-IgM+IgD+(mature-B)細(xì)胞所占的比例。
1.2.4 胸腺單細(xì)胞懸液制備 頸椎脫臼犧牲小鼠,完整摘取胸腺,使用兩片載玻片研磨,200目濾網(wǎng)過(guò)濾置離心管中,計(jì)數(shù)、調(diào)整濃度至 1×108cell/m L。取10 uL細(xì)胞懸液置于96孔板一孔中,加入CD8/ FITC、CD45/Percp-cy5.5、CD4/APC-cy7抗體,冰上避光孵育30 min,加入200 uLstaining medium(PBS +1%BSA),400 g/m in離心5 m in,棄上清后用200 uLstaining medium重新懸浮細(xì)胞,200目濾網(wǎng)過(guò)濾至流式管中準(zhǔn)備流式分析,每只小鼠收集1×105細(xì)胞,計(jì)算 CD45陽(yáng)性細(xì)胞、CD8單陽(yáng)性細(xì)胞、CD4/ CD8雙陽(yáng)細(xì)胞、CD4/CD8雙陰性細(xì)胞及 CD4單陽(yáng)性細(xì)胞所占的比例。
1.3 統(tǒng)計(jì)學(xué)分析
2.1 PCR鑒定結(jié)果及 W IP1基因缺失小鼠形態(tài)差異

圖1 PCR鑒定WIP1基因敲除小鼠的凝膠電泳分析及W IP1缺失小鼠形態(tài)差異圖1A:Marker為DL2000 marker,H20為空白對(duì)照,WT為野生型對(duì)照,KO為基因敲除對(duì)照,HET為雜合對(duì)照; 1316/1317/1318/1319為樣品;1B為3月齡W IP1缺失雄性小鼠與同窩野生型對(duì)照體型對(duì)比Fig.1 PCR genotyping of the W IP1-/-mice and the Morphological alterations in Wip1 nullmales 1A:The marker is the DNA molecular weightmarker;H2O indicates the negative control;WT:wild-type control; KO:WIP1 gene knockout control;HET:heterozygosity control;Lane 1316—1319:stands for DNA samples of W IP1 mice;1B:The smaller animal on the right is W IP1-/-male littermate along with a wild-type male littermate at 3 months of age
基因型鑒定結(jié)果如圖1A所示。W IP1基因在小鼠全身眾多臟器組織中表達(dá),由于W IP1基因在睪丸中表達(dá)最為明顯,因此該基因缺失致使雄性小鼠發(fā)育不全,生育力下降,雄性缺失小鼠在3月齡時(shí)體型較同窩野生型對(duì)照小鼠明顯變小(如圖1B)。有研究報(bào)道W IP1缺失的雄性小鼠生命期限明顯縮短,而W IP1+/-雄性小鼠及W IP1-/-雌性小鼠生命期限較野生型差異不明顯。
2.2 骨髓中B細(xì)胞比例流式分析
為研究W IP1基因缺失對(duì)成年小鼠骨髓B細(xì)胞發(fā)育的影響,我們分析了3月齡W IP1-/-小鼠和野生型對(duì)照小鼠的骨髓B細(xì)胞和M細(xì)胞的比例。(如圖2A 2B)。結(jié)果顯示W(wǎng) IP1缺失的小鼠骨髓B細(xì)胞比例下降(如圖2C)。而M細(xì)胞比例無(wú)明顯差異。為了進(jìn)一步研究B細(xì)胞在發(fā)育過(guò)程中哪一階段出現(xiàn)問(wèn)題,我們依據(jù)骨髓B細(xì)胞發(fā)育過(guò)程中特異性表面標(biāo)記的表達(dá)順序進(jìn)行了染色(如圖2D 2E 2F 2G),結(jié)果顯示 W IP1基因缺失的骨髓 B細(xì)胞各發(fā)育階段比較野生對(duì)照均為正常,提示骨髓B細(xì)胞比例下降可能是由于Pre-B之前更前體的祖細(xì)胞發(fā)育障礙導(dǎo)致。
2.3 胸腺中T細(xì)胞比例流式分析
為研究W IP1基因?qū)Τ赡晷∈笮叵侔l(fā)育的影響,我們分析了三月齡W IP1-/-及野生型對(duì)照小鼠的胸腺形態(tài)差異(如圖3D),發(fā)現(xiàn)WIP1缺失小鼠的胸腺明顯較野生型對(duì)照小,進(jìn)一步對(duì)胸腺白細(xì)胞表面標(biāo)記CD45染色發(fā)現(xiàn),W IP1缺失小鼠胸腺白細(xì)胞比例明顯較野生型低(如圖3A、3B及3C)。
為進(jìn)一步明確胸腺T細(xì)胞在發(fā)育階段哪一步出現(xiàn)問(wèn)題,我們對(duì)胸腺細(xì)胞進(jìn)行CD8及CD4染色。結(jié)果顯示,W IP1缺失小鼠胸腺CD8/CD4雙陰性細(xì)胞比例明顯升高,而CD8/CD4雙陽(yáng)性比例降低,由CD8/CD4雙陽(yáng)性細(xì)胞進(jìn)一步分化的CD8單陽(yáng)性細(xì)胞比例升高,而CD4單陽(yáng)性細(xì)胞變化不大。


圖2 骨髓B細(xì)胞比例流式分析2A:野生型小鼠骨髓中B細(xì)胞、M細(xì)胞比例;2B:WIP1敲除小鼠骨髓中B細(xì)胞、M細(xì)胞比例;2C:WIP1缺失骨髓B細(xì)胞比例與野生型對(duì)照比較明顯降低;2D-2E:野生型骨髓B細(xì)胞發(fā)育流式圖;2F-2G:WIP1缺失小鼠骨髓B細(xì)胞發(fā)育流式圖Fig.2 Flow cytometric analysis of the proportion of B cell in bonemarrow2A:The ratio of B cells and M cells in wild-type mice bone marrow;2B:The ratio of B cells and M cells in WIP1-/-mice bonemarrow;2C:Histogram showing the lower percentage of B cells in W IP1-/-mice than WTmice;2D-2E:FACS plots show the development of B cell in WT bone marrow; 2F-2G:FACS plots show the development of B cell in W IP1-/-bone marrow
已有的研究表明W IP1蛋白作為一種磷酸酶,參與眾多細(xì)胞信號(hào)通路調(diào)控,對(duì)DNA損傷修復(fù)、癌癥的發(fā)生、細(xì)胞穩(wěn)態(tài)的調(diào)控及抗衰老起重要的作用。而鮮有研究W IP1在B細(xì)胞T細(xì)胞發(fā)育過(guò)程中是否起到重要作用。我們對(duì)W IP1缺失小鼠的骨髓B細(xì)胞及胸腺 T細(xì)胞進(jìn)行流式細(xì)胞術(shù)分析,發(fā)現(xiàn)WIP1缺失導(dǎo)致骨髓 B細(xì)胞比例降低,在胸腺中 T細(xì)胞發(fā)育障礙。骨髓和胸腺分別是B細(xì)胞和T細(xì)胞分化發(fā)育成熟的場(chǎng)所。在成熟小鼠的骨髓中,B細(xì)胞所占比例為20~30%左右,而W IP1缺失小鼠的骨髓B細(xì)胞僅為10%左右,為了弄清楚B細(xì)胞在發(fā)育過(guò)程的哪一階段遇到障礙,我們進(jìn)而依據(jù)B細(xì)胞發(fā)育階段所表達(dá)的特異性表面標(biāo)記進(jìn)行染色,流式分析發(fā)現(xiàn),在Pre-B之后的B細(xì)胞發(fā)育各階段細(xì)胞比例均正常,從而猜想骨髓中B細(xì)胞比例整體降低可能是由于更前體的祖細(xì)胞發(fā)育障礙。W IP1缺失小鼠的胸腺中T細(xì)胞數(shù)目整體降低,在WIP1敲除小鼠模型中,CD8/CD4雙陰性T細(xì)胞比例高于野生型對(duì)照小鼠,而CD8/CD4雙陽(yáng)性細(xì)胞比例低于對(duì)照組(差異不顯著,但具有統(tǒng)計(jì)學(xué)差異),與已有報(bào)道一致,而CD8單陽(yáng)性T細(xì)胞比例升高,不同于已有報(bào)道的CD8單陽(yáng)T細(xì)胞比例降低,此外CD4單陽(yáng)T細(xì)胞比例變化不明顯而非已有報(bào)道的CD4單陽(yáng)T細(xì)胞比例降低。
已有的報(bào)道發(fā)現(xiàn)衰老小鼠會(huì)產(chǎn)生淋系發(fā)育障礙,同時(shí)伴隨著髓系細(xì)胞過(guò)度增殖[11],這與人類衰老時(shí)免疫能力下降及髓系白血病發(fā)病率升高相吻合。我們的研究表明W IP1基因參與調(diào)控B細(xì)胞及T細(xì)胞的發(fā)育,W IP1基因缺失導(dǎo)致骨髓B細(xì)胞及胸腺T細(xì)胞比例下降,影響小鼠免疫系統(tǒng)正常發(fā)育,暗示W(wǎng) IP1基因可能直接參與調(diào)控個(gè)體衰老。作為重要的衰老相關(guān)調(diào)控基因,P53、P38等在衰老過(guò)程中發(fā)生明顯變化,端??s短導(dǎo)致的復(fù)制性衰老直接引起P53的高表達(dá);在小鼠胰島β細(xì)胞中隨著衰老的進(jìn)行,WIP1表達(dá)逐漸下降,同時(shí) P38表達(dá)升高[8]。而W IP1做為P38/P53信號(hào)通路的負(fù)反饋調(diào)節(jié)基因[1],W IP1的缺失直接導(dǎo)致 p38/p53的升高,尤其在放射線照射、衰老等應(yīng)激條件下,p38/p53持續(xù)的高表達(dá)使受損傷的細(xì)胞在修復(fù)之后無(wú)法正常的返回細(xì)胞周期,從而走向衰老或凋亡。可見(jiàn)W IP1對(duì)抗衰老尤其是調(diào)節(jié)免疫衰老具有重要的應(yīng)用前景,然而W IP1的過(guò)表達(dá)極易導(dǎo)致癌癥的發(fā)生,因此如何調(diào)控W IP1在衰老進(jìn)程中的表達(dá)仍是限制其臨床應(yīng)用的重要障礙,對(duì)W IP1調(diào)控B細(xì)胞T細(xì)胞的具體分子機(jī)制及調(diào)控免疫衰老的機(jī)制仍須進(jìn)一步研究。

圖3 胸腺形態(tài)學(xué)分析注:3A:野生型小鼠胸腺白細(xì)胞比例;3B:W IP1缺失小鼠胸腺白細(xì)胞比例;3C:W IP1缺失小鼠胸腺白細(xì)胞比例較野生型對(duì)照組明顯低;3D:野生型小鼠胸腺與W IP1缺失小鼠胸腺形態(tài)比較Fig.3 Morphological alteration about thymus in W IP1-/-nullmiceNote:3A:The ratio of white blood cells in 3 months old wild-type mice thymus;3B:The ratio of white blood cells in 3 months old W IP1deletion mice thymus;3C:Histogram showing the lower percentage of white blood cells in WIP1-/-mice compare with WTmice;3D:Thesize of W IP1-/-mice thymus is much smaller than WT

圖4 胸腺T細(xì)胞流式分析4A:WIP1缺失小鼠胸腺CD8單陽(yáng)性T細(xì)胞比例較野生型高;4B:W IP1缺失小鼠胸腺CD8/CD4雙陰性T細(xì)胞比例較野生型明顯高;4C:WIP1缺失小鼠胸腺CD8CD4雙陽(yáng)性T細(xì)胞比例較野生型低;4D:W IP1缺失小鼠胸腺CD4單陽(yáng)性T細(xì)胞比例與野生型相比無(wú)明顯差異;4E:野生型小鼠胸腺T細(xì)胞各亞群比例;4F:WIP1缺失小鼠胸腺T細(xì)胞亞群比例Fig.4 Flow cytometric analysis of the proportion of T cell in thymus 4A:The ratio of CD8 single positive cells in WIP1 deletion mice is higher than WT;4B: The ratio of CD8/CD4 double negative cells in W IP1 deletion mice is significantly higher than WT;4C:The ratio of CD8/CD4 double positive cells in W IP1 deletion mice is lower than WT;4D:The ratio of CD4 single positive cells do not have different between WIP-/-and WT;4E-4F:FACS plots of different subsets T cells from WT and WIP1-/-m ice thymus
[1]Lu X,Nguyen TA,Moon SH,et al.The type 2C phosphatase W ip1:an oncogenic regulator of tumor suppressor and DNA damage response pathways[J].Cancer Metastasis Rev2008,27 (2):123-135.
[2]Choi J,Nannenga B,Demidov ON,et al.Mice deficient for the wild-type p53-induced phosphatase gene(Wip1)exhibit defects in reproductive organs,immune function,and cell cycle control[J].Mol Cell Biol2002,22(4):1094-1105.
[3]Yu E,Ahn YS,Jang SJ,et al.Overexpression of the wip1 gene abrogates the p38 MAPK/p53/W ip1 pathway and silences p16 expression in human breast cancers[J].Breast Cancer Res Treat 2007,101(3):269-278.
[4]Harrison M,Li J,Degenhardt Y,et al.W ip1-deficientmice are resistant to common cancer genes[J].Trends Mol Med 2004,10 (8):359-361.
[5]Demidov ON,Timofeev O,Lwin HN,et al.W ip1 phosphatase regulates p53-dependent apoptosis of stem cells and tumorigenesis in the mouse intestine[J].Cell Stem Cell 2007,1(2):180 -190.
[6]Schito ML,Demidov ON,Saito S,et al.W ip1 phosphatasedeficientmice exhibit defective T cellmaturation due to sustained p53 activation[J].J Immunol2006,176(8):4818-4825.
[7]Zhu YH,Zhang CW,Lu L,et al.Wip1 regulates the generation of new neural cells in the adult olfactory bulb through p53-dependent cell cycle control[J].Stem Cells2009,27(6):1433 -1442.
[8]Le Guezennec X,Bulavin DV,et al.W IP1 phosphatase at the crossroads of cancer and aging[J].Trends Biochem Sci2010,35 (2):109-114.
[9]Cha H,Lowe JM,Li H,et al.W ip1 directly dephosphorylates gamma-H2AX and attenuates the DNA damage response[J].Cancer Res2010,70(10):4112-4122.
[10]Moon SH,Nguyen TA,Darlington Y,et al.Dephosphorylation of gammaH2AX by WIP1:An important homeostatic regulatory event in DNA repair and cell cycle control[J].Cell Cycle2010,9(11).
[11]Ju Z,Jiang H,Jaworski M,et al.Telomere dysfunction induces environmental alterations limiting hematopoietic stem cell function and engraftment[J].Nat Med 2007,13(6):742-747.