999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

一類宏觀經濟學中的二階離散方程的正解的有界性

2011-01-01 00:00:00馬慧莉,徐嘉,馬慧芳
經濟數學 2011年1期

摘 要 利用LeraySchauder 延拓定理,使用對角化方法考慮了來源于宏觀經濟學中的一類二階差分方程的有界性.

關鍵詞 正解;對角化方法;邊值問題

中圖分類號 O175.7 文獻標識碼 A

Boundedness of Positive Solutions for Nonlinear Second Order Discrete Equations from Macroeconomics

MA Huili1,XU Jia2,MA Huifang3

(1.College of Economics and Management, Northwest Normal University,Lanzhou,Ganshu 730010,China;

2.College of Physical Education, Northwest Normal University,Lanzhou,Ganshu 730070,China;

3.Coolege of Mathematics and In for mation Science,Northwest Normal University,Lazhou,Gansu 730070,China)

Abstract By using the LeraySchauder continuation theorem and diagonalization method,this paperstudied the existence and boundedness of the positive solutions for the equation from macroeconomics.

Key words positive solution; diagonalization arguments; boundary value problems

1 Introduction

Set Z+={1,2,…},N={0,1,…},N(a)={a,a+1,…},[a,b]={a,a+1,…,b}, a,b∈N,a<b<,[a,b]R={x∈R|a≤x≤b,a,b∈R)}.

Let X[a,b]={ψ|ψ:[a,b]→R} with the norm ‖ψ‖X[a,b]=max{|ψ(t)|t∈[a,b]}.

Let Y[a,b]={ψ|ψ:[a,b]→R} with the norm ‖ψ‖L[a,b]=∑bt=a|ψ(t)|.

Consider the following equation

Δ2u(k-1)+g(k,u(k),Δu(k))=0.(1)

Equation of (1) and similar, arose in some of the earliest mathematical modelsof the macroeconomic “trade cycle”. For example, equation (1) generalizes the classic HasenSamuelson’s acceleratormultiplier model[1], namely,

Yn+1=cYn+αc(Yn-Yn-1)+A0,

where the constant A0=C0+I0+G0 represents the sum of the minimum consumption, the “autonomous” investment and the fixed government spending in period n, and Yn is the outputGNP or national incomein period n. The net investment amount in the same period is given as In=αc(Yn-1-Yn-2).The constant c∈(0,1)represents Keynes’ “marginal propensity to consume” or the MPC, while the coefficient α > 0 is the “accelerator”.

The linear model above improved the earlier Keynesian models in substantial new research. However, this model was soon found to be unsatisfactory and certain nonlinear models were subsequently proposed. For instance, rather than the linear Keynesian consumption C(Y)=cY+C0,Samuelson considered a nonlinear consumption function[2]. Some years later, Hicks proposed a model in which consumption was linear, but investment and output were both piecewise linear[3]. For other similar nonlinear models, the reader can refer the work[4-5] and the references therein.

Few of the existing results in the literature seem directly applicable to equation (1) in setting basic questions such as boundedness and convergence. The objective of this paper is to investigate some of the mathematical properties ofequation(1). Specifically, we study the existence and boundedness of the positive solutions for the equation (1). To be convenient, wediscuss the existence of positive solution of the following corresponding boundary value problem

Δ2u(k-1)+g(k,u(k),Δu(k))=0,k∈Z+,

u(0)=0,u is bounded on N.(2)

The main result of this paper is the following theorem.

Theorem 1Let g: Z+×R+×R+→R+. Assume we have the following

(H1) For any constant H>0, there exists a nonnegative function ψH(k),k∈(0, and a constant o≤γ<1 with

g(k,u,v)≥ψH(k)vγ on Z+×0,H2R;

(H2) There exists functions p,q,r:R+→R+ such that

Q=∑k=1q(k)<,Q1=∑k=1kq(k)<

P1=∑k=1kp(k)<

R=∑ R1=∑

and

|g(k,u,v)|≤p(k)|u|+q(k)|v|+r(k), (k,u,v)∈R+3.

Then equation (2) has at least one solution provided P1+Q<1.

2 Proof of the main results

Lemma 1Let e∈Y[1,n] and x be a function such that

Δ2x(k-1)+e(k)=0,k∈[1,n]

and

x(0)=0,Δx(n)=0.

Then

‖Δx‖x[0,n]≤‖e‖L[1,n].

Proof Since -Δ2x(k-1)=e(k),k∈[1,n] can be extended to

 -Δx(k)+Δx(k-1)=e(k),k∈[1,n], 

summing from k to n for both sides results in

Δ x(k-1)=∑nt=k[-Δ2x(t-1)]=∑nt=ke(t).

that is,

‖Δx‖x[0,n]=‖Δx‖x[0,n-1]≤‖e‖L[1,n].

Lemma 2Let (H1) and (H2) hold. Let n be a positive integer and consider the boundary value problem

Δ2u(k-1)+g(k,u(k),Δu(k))=0,k∈[1,n],u(0)=0,Δu(n)=0.(3)

Then equation (3) has at least one positive solution yn∈X[0,n+1] and there is a constant M>0 independent ofn such that

∑kt=0[∑ns=t+1ψM(s)(b(s))γ]11-γ≤yn(k)≤M,

k∈[0,n],

經 濟 數 學第 28卷第1期馬慧莉等:一類宏觀經濟學中的二階離散方程的正解的有界性

where b is some function satisfies 0≤b(t)<1,t∈[1,n] which will be defined later.

Proof Define a linear operator

Ln:D(Ln)X[0,n+1]→Y[1,n]

by setting

D(Ln)={x∈X[0,n+1]:x(0)=Δx(n)=0},and for y∈D(Ln),Lny(k)=-Δ2y(k-1).

We also define a nonlinear mapping N:X[0,n+1]→Y[1,n]by setting

(Nu)(k)=g(k,u(k),Δu(k)).

We have from the fact N is bounded, mapping from X[0,n+1] to Y[1,n].

Next, it is easy to see that L:D(Ln)X[0,n+1]→Y[1,n] is one to one mapping. Moreover, it follows easily by using ArzélaAscoli theorem that

(Ln)-1N:X[0,n+1]→X[0,n+1] is a compact mapping.

We note y is a solution of equation (3) if and only if y is a fixed point of the equation

y=(Ln)-1Ny.

We apply the LeraySchauder continuation theorem[3][6] to obtain the existence of a solution for y=(Ln)-1Ny. To do this, it suffices to verify that the set of all possible solutions of the family of equations

Δ2u(k-1)+λg(k,u(k),Δu(k))=0,k∈[1,n],

u(0)=0,Δu(n)=0(4)

has a prior, bounded in X by a constant independent of λ∈(0,1).

Let y∈X[0,n+1] be any solution of equation (4), then

Δy(k)≥0, k∈[0,n],

y(k)≥0, k∈[0,n+1].

Moreover, we have from y(k+1)=∑kt=0Δy(t) that |y(k+1)|≤k‖Δy‖X[0,n].

Applying lemma 1 and using equation (4), we can get that

‖Δy‖X[0,n]≤‖g(k,y(k),Δy(k))‖L[1,n]≤

‖p(k)y(k)‖L[1,n]+‖q(k)Δy(k)‖L[1,n]+

‖r(k)‖L[1,n]≤(‖(k-1)p(k)‖L[1,n]+

‖q‖L[1,n])‖Δy‖X[0,n]+‖r‖L[1,n]≤

(P1+Q)‖Δy‖X[0,n]+R. 

So we have consequently

‖Δy‖X[0,n]≤R1-P1-Q:=M1.

From equation (4), we have that

y(n)=λ∑nk=1∑nt=kg(t,y(t),Δy(t))

=λ∑nt=1tg(t,y(t),Δy(t)).

Moreover,

y(n+1)≤∑n+1t=1tg(t,y(t),Δy(t))=

‖tg(t,y(t),Δy(t))‖L[1,n+1] ≤

‖tp(t)‖L[1,n+1]‖y‖X[0,n+1] +

‖tq(t)‖L[1,n+1]‖Δy‖X[0,n]+

‖tr(t)‖L[1,n+1]≤P1‖y‖X[0,n+1]+

Q1‖Δy‖X[0,n]+R1,

‖y‖X[0,n+1]≤Q1M1+R11-P1:=M2,

Thus equation (4) has a solution yn with ‖yn‖X[0,n+1]≤M2. In fact,

0≤yn(k)≤M2, k∈[0,n+1];

0≤Δyn(k)≤M1, k∈[0,n].(5)

Finally, it’s obvious that M1 and M2 are independent of n∈Z+. Now (H1) guarantees the existence of a function ψM(k), which is positive on (0,

SymboleB@ ),and a constant γ∈[0,1]with g(k,yn(k),Δyn(k))≥ψM(k)[Δyn(k)]γ for (k,yn(k),Δyn(k))∈[1,n]×[0,M]2R,where M=max{M1,M2}.

Of course, from equation(4) and the fact that Δyn(k)≥0 on [0,n], we have

-Δ2yn(k-1)≥ψM(k)[Δyn(k)]γ.

Sum from k+1 to n to obtain

-∑nt=k+1Δ2yn(t-1)≥∑nt=k+1ψM(t)[Δyn(t)]γ,

that is,

Δyn(k)≥∑nt=kψM(t)[Δyn(t)]γ. (6)

While Δ2yn(t-1)≤0 implies that there exists 0≤b(t)<1 such that

Δyn(t)≥b(t)Δyn(k), t∈{k+1,…,n},

which combined with equation (6) lead to

Δyn(k)≥∑nt=k+1ψM(t)(b(t))γ[Δyn(k)]γ,

Δyn(k)≥[∑nt=k+1ψM(t)(b(t))γ]11-γ.

Thus,

yn(k)≥∑kt=0[∑ns=t+1ψM(s)(b(s))γ]11-γ.

Proof of the main theorem. From equation (4) and (5), we know that

0≤-Δ2yn(k-1)≤φ(k),k∈[1,n],

where φ(k)=[p(k)+q(k)]M+r(k).

In addition, we have

Δyn(k-1)≤∑nt=kφ(t)≤∑

To show equation (2) has a solution, we will apply the diagonalization argument. Let

un(k)=yn(k),k∈[0,n+1],

yn(n),k∈[n+1,∞].

Note that

0≤un(k)≤M,k∈[0,n+1];

0≤Δun(k)≤M,k∈[0,n].

From the definition of un, we get

|Δun(k1)-Δun(k2)|≤∑k2t=k1|φ(t)|, k1,k2∈N.

References

[1] P A Samuelson. Interaction between the multiplier analysis and the principle of acceleration[J]. Review of Econ. Stat., 1939, 21(2): 75-78.

[2] P ASamuelson. A synthesis of the principle of acceleration and the multiplier[J]. JPolitical Ecno, 1939,47(6):786-797.

[3] J R Hicks. A contribution to the theory of the trade cycle[M]. Oxford:Oxford University Press,1950.

[4] P N V Tu. Dynamical systems: an introduction with applications in economics and biology, 2nd edn.[M]. New York:Springer,1994.

[5] Hassan Sedaghat. A class of nonlinear second order difference equations from macroeconomics[J]. Nonlinear Anal., 1997, 29(5): 593-603.

[6] D Guo.Nonlinear functional analysis[M].Jinan:Shandong Science and Technology Press,2002.(In Chinese)

注:本文中所涉及到的圖表、注解、公式等內容請以PDF格式閱讀原文

主站蜘蛛池模板: 激情乱人伦| 999福利激情视频| 国产麻豆精品在线观看| 一本一道波多野结衣一区二区| 亚洲国产中文精品va在线播放 | 国产无码制服丝袜| 日韩一二三区视频精品| 色婷婷成人| jizz亚洲高清在线观看| 精品久久777| 国产精品色婷婷在线观看| 日日碰狠狠添天天爽| 中日无码在线观看| 亚洲开心婷婷中文字幕| 国产乱子伦视频在线播放| 视频二区国产精品职场同事| 91美女在线| av大片在线无码免费| 亚洲最大看欧美片网站地址| 日韩无码黄色| 国产成人精品一区二区免费看京| 亚洲精品自拍区在线观看| 国产在线日本| 伊人丁香五月天久久综合| 欧美在线综合视频| 久久青草视频| 日本国产精品一区久久久| 萌白酱国产一区二区| 久久精品91麻豆| 亚洲精品无码久久毛片波多野吉| 日本人真淫视频一区二区三区| 亚洲一区网站| 亚洲第一成人在线| 亚洲日本在线免费观看| 欧美日韩资源| 日韩中文无码av超清| 国产福利影院在线观看| 久久久久国产精品免费免费不卡| 国产凹凸视频在线观看| 亚洲精品动漫在线观看| 毛片基地视频| 色噜噜在线观看| AV在线麻免费观看网站| 亚洲欧美日韩成人高清在线一区| 国产打屁股免费区网站| aa级毛片毛片免费观看久| 国产欧美日韩免费| 欧美亚洲国产精品第一页| 国产午夜无码片在线观看网站| 99er这里只有精品| 久久婷婷综合色一区二区| 一级毛片a女人刺激视频免费| 99在线视频精品| 在线观看免费国产| 伊在人亚洲香蕉精品播放 | 国产成人禁片在线观看| 欧美在线网| 老司机aⅴ在线精品导航| 99手机在线视频| 久久一本精品久久久ー99| 小说区 亚洲 自拍 另类| 中文字幕亚洲电影| 欧美激情成人网| 欧美精品成人| 色九九视频| 二级特黄绝大片免费视频大片| 天堂成人av| 国产精品福利尤物youwu | 亚洲欧美日韩综合二区三区| 免费看黄片一区二区三区| 露脸国产精品自产在线播| 欧美一区二区啪啪| 欧美啪啪网| 成人午夜网址| 亚洲无码精品在线播放| 女人爽到高潮免费视频大全| 四虎国产精品永久一区| 欧美成人二区| 一级全免费视频播放| 2021天堂在线亚洲精品专区| 又粗又大又爽又紧免费视频| 欲色天天综合网|